首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Although many teratogens are known to activate apoptotic pathways culminating in abnormal development, little is known about how the embryo transduces a teratogenic exposure into specific responses. Signal reception and transduction are regulated by a number of signal transduction pathways, including the extracellular signal-regulated protein kinases (ERKs), c-Jun N-terminal kinases (JNKs) and the stress-activated protein kinase, p38. METHODS: To analyze the effects of teratogens on MAP kinases, we used whole embryo culture, Western blot analyses, and antibodies recognizing inactive or active MAP kinases, or both. RESULTS: We show that heat shock (HS) induces a rapid, strong, but transient activation of ERK, JNK, and p38 with maximal activation occurring within 30 min of the heat shock. By contrast, cyclophosphamide (CP) and staurosporine (ST) failed to activate ERK or JNK during the time period studied (7. 5 hr). ST and CP did induce a low but reproducible activation of p38 beginning at around 3 hr and 5 hr, respectively, after the initiation of exposure. Previous work has shown that heat shock induces elevated cell death in the embryo, primarily in the developing neuroepithelium, but not in the embryonic heart. Thus, we also compared the activation of these three MAP kinase pathways in heads, hearts, and trunks isolated from day 9 embryos exposed to 43 degrees C for 15 min. The results show that ERK, JNK, and p38 are activated in heads, hearts, and trunks. CONCLUSIONS: Our results show that day 9 embryos do activate MAP kinase signaling pathways in response to teratogenic exposures; however, activation of a particular pathway does not appear to be required for teratogen-induced apoptosis.  相似文献   

2.
3.
Mitogen-activated protein kinases (MAPKs) mediate many of the cellular effects of growth factors, cytokines and stress stimuli. Their activation requires the phosphorylation of a threonine and a tyrosine residue located in a Thr-X-Tyr motif (where X is any amino acid) [1]. This phosphorylation is catalysed by MAPK kinases (MKKs), which are all thought to be ‘dual specificity’ enzymes that phosphorylate both the threonine and the tyrosine residue of the Thr-X-Tyr motif [2]. Here, we report that the MAPK family member known as stress-activated protein kinase-1c (SAPK1c, also known as JNK1) [3] is activated synergistically in vitro by MKK4 ([4], [5] and [6]; also called SKK1 and JNKK1) and MKK7 ([7], [8] and [9]; also called SKK4 and JNKK2). We found that MKK4 had a preference for the tyrosine residue, and MKK7 for the threonine residue, within the Thr-X-Tyr motif. These observations suggest that the full activation of SAPK1c in vivo may sometimes require phosphorylation by two different MKKs, providing the potential for integrating the effects of different extracellular signals. They also raise the possibility that other MAPK family members may be activated by two or more MKKs and that some MKKs may have gone undetected because they phosphorylate the tyrosine residue only, and therefore do not induce any activation unless the threonine has first been phosphorylated by another MKK.  相似文献   

4.
Advanced malignancies often exhibit increased concentrations of transforming growth factor-beta (TGF beta), which has been suggested to promote invasion and metastasis. While inhibition of epithelial cell proliferation in response to TGF beta is mainly mediated by the well-characterised Smad pathway, the molecular mechanism leading to TGF beta-induced invasiveness and metastasis are largely unknown. To elucidate these mechanisms, we compared TGF beta1 signalling in MCF-7 and the Smad4-negative MDA-MB-468 breast cancer cells. Both cell lines react to TGF beta1 treatment with decreased subcortical actin and increased numbers of focal contacts. TGF beta1-induced cell migration was strongly dependent on the activation of extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK). These mitogen-activated protein kinases were phosphorylated in response to TGF beta and subsequently translocated into focal contacts. Inhibition of the TGF beta type I receptor ALK5 slightly reduced phosphorylation of ERK in MCF-7 cells, but neither inhibited phosphorylation of ERK in MDA-MB-468 cells nor TGF beta1-induced migration of both cell lines. In contrast, ALK5 inhibition effectively blocked Smad2 phosphorylation. In addition to ERK and JNK, the monomeric GTPase RhoA was activated by TGF beta1 and necessary for TGF beta-induced migration. Taken together, our study identifies a role of ERK and JNK activation and association of activated MAPKs with focal complexes in TGF beta1-induced cell migration in epithelial cells. These TGF beta-dependent processes were mediated independently of Smad4.  相似文献   

5.
The c-Jun N-terminal kinase (JNK) can be activated in T-cells either by the combination of TCR and CD28 costimulation or by a variety of stress-related stimuli including UV light, H(2)O(2), and hyperosmolar sorbitol solutions. In T-lymphocytes, TCR/CD28 stimulation of JNK leads to induction of new gene expression via c-Jun, ATF-2, and Elk-1. Phosphorylation of c-Jun in CD4(+) T-cells stimulated by CD3/CD4/CD28 cross-linking declines with age, due to diminished activation of JNK. Here we show that the age-related decline in TCR/CD28 activation of JNK reflects two effects of age: the accumulation of memory cells (in which JNK stimulation is poor regardless of donor age) and age-dependent declines in JNK activation within the naive subset. Cyclosporin A inhibits induction of JNK function by TCR/CD28, PMA/ionomycin, ceramide, or H(2)O(2), but not induction by UV light or hyperosmolar sorbitol. Although aging impairs JNK induction by UV light, it has no effect on JNK activation by ceramide, H(2)O(2), or sorbitol. The data as a whole indicate that there are at least four pathways that activate JNK in CD4(+) T-cells, of which two are age-sensitive and two others unaffected by aging. Two of the pathways (UV and hyperosmolar sorbitol) are insensitive to cyclosporin inhibition. Finally, we show that the alterations in JNK function are not due to changes in the expression of MKK4, an upstream activator of JNK, and that another JNK kinase, MKK7, is not expressed in splenic T-cells.  相似文献   

6.
7.
Regulatory mechanisms and function of ERK MAP kinases   总被引:7,自引:0,他引:7  
Spatiotemporal control of the Ras/ERK MAP kinase signaling pathway is a key factor for determining the specificity of cellular responses including cell proliferation, cell differentiation and cell survival. The fidelity of this signaling is regulated by docking interactions as well as scaffolding. Subcellular localization of ERK is controlled by cytoplasmic ERK anchoring proteins that have a nuclear export signal (NES), such as MEK. In quiescent cells, ERK and MEK localize to the cytoplasm. In response to stimulation, dissociation of the MEK-ERK complex is induced and activated ERK translocates to the nucleus. Recently, several negative regulators for Ras/ERK signaling have been identified and their detailed molecular mechanisms have been analyzed. Among them, Sprouty and Sef act as a temporal and a spatial regulator, respectively, for Ras/ERK signaling. Thus, multiple factors are involved in control of Ras/ERK signaling.  相似文献   

8.
Lu Z  Xu S 《IUBMB life》2006,58(11):621-631
ERK1/2 is an important subfamily of mitogen-activated protein kinases that control a broad range of cellular activities and physiological processes. ERK1/2 can be activated transiently or persistently by MEK1/2 and upstream MAP3Ks in conjunction with regulation and involvement of scaffolding proteins and phosphatases. Activation of ERK1/2 generally promotes cell survival; but under certain conditions, ERK1/2 can have pro-apoptotic functions.  相似文献   

9.
10.
11.
Tat, the transactivator of HIV-1 gene expression, is released by acutely HIV-1-infected T-cells and promotes adhesion, migration, and growth of inflammatory cytokine-activated endothelial and Kaposi's sarcoma cells. It has been previously demonstrated that these effects of Tat are due to its ability to bind through its arginine-glycine-aspartic (RGD) region to the alpha5beta1 and alphavbeta3 integrins. However, the signaling pathways linking Tat to the regulation of cellular functions are incompletely understood. Here, we report that Tat ligation on human endothelial cells results in the activation of the small GTPases Ras and Rac and the mitogen-activated protein kinase ERK, specifically through its RGD region. In addition, we demonstrated that Tat activation of Ras, but not of Rac, induces ERK phosphorylation. We also found that the receptor proximal events accompanying Tat-induced Ras activation are mediated by tyrosine phosphorylation of Shc and recruitment of Grb2. Moreover, Tat enabled endothelial cells to progress through the G1 phase in response to bFGF, and the process is linked to ERK activation. Taken together, these data provide novel evidence about the ability of Tat to activate the Ras-ERK cascade which may be relevant for endothelial cell proliferation and for Kaposi's sarcoma progression.  相似文献   

12.
13.
14.
15.
16.
c-Jun NH(2)-terminal kinase (JNK) is activated by a number of cellular stimuli such as inflammatory cytokines and environmental stresses. Reactive oxygen species also cause activation of JNK; however, the signaling cascade that leads to JNK activation remains to be elucidated. Because recent reports showed that expression of Cas, a putative Src substrate, stimulates JNK activation, we hypothesized that the Src kinase family and Cas would be involved in JNK activation by reactive oxygen species. An essential role for both Src and Cas was demonstrated. First, the specific Src family tyrosine kinase inhibitor, PP2, inhibited JNK activation by H(2)O(2) in a concentration-dependent manner but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Second, JNK activation in response to H(2)O(2) was completely inhibited in cells derived from transgenic mice deficient in Src but not Fyn. Third, expression of a dominant negative mutant of Cas prevented H(2)O(2)-mediated JNK activation but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Finally, the importance of Src was further supported by the inhibition of both H(2)O(2)-mediated Cas tyrosine phosphorylation and Cas.Crk complex formation in Src-/- but not Fyn-/- cells. These results demonstrate an essential role for Src and Cas in H(2)O(2)-mediated activation of JNK and suggest a new redox-sensitive pathway for JNK activation mediated by Src.  相似文献   

17.
18.
SDF-1-induced activation of ERK enhances HIV-1 expression   总被引:1,自引:0,他引:1  
Chemokine receptors are not only able to bind chemokines but, together with CD4, they serve as an entry door for the human immunodeficiency virus type 1 (HIV-1). The signalling capacity of chemokine receptors, which is of fundamental importance for chemokine-induced chemotaxis, is not used by HIV-1 to enter a target cell, nor by chemokines or chemokine-derived ligands to inhibit viral entry. In addition, an ill-defined signal triggered by chemokines can, under some circumstances, lead to an increase in HIV-1 expression. We show here that, in infected cells, exposure to SDF-1 leads to an increased expression of a X4 strain of HIV-1. A similar increase can be induced by an N-terminal peptide of SDF-1 which had previously been shown to elicit an intracellular calcium response and to inhibit the entry of X4 strains of HIV-1. We demonstrate the involvement of extracellular signal-regulated kinases (ERK) in this phenomenon. SDF-1 activates ERK-1 and ERK-2 in Jurkat cells. In HeLa cells, ERK-2 only is activated by SDF-1 or by a SDF-derived peptide. This ERK activation can be blocked by pertussis toxin and by the MEK inhibitor U0126. Most importantly, SDF-1-dependent HIV-1 expression is abolished by pretreating the cells with pertussis toxin or with U0126. The consequences of this SDF-1-induced, ERK-dependent modulation of HIV-1 expression in infected cells may have a clinical relevance for eradicating latent viruses.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) can establish latent infection following provirus integration into the host genome. NF-kappaB plays a critical role in activation of HIV-1 gene expression by cytokines and other stimuli, but the signal transduction pathways that regulate the switch from latent to productive infection have not been defined. Here, we show that ERK1/ERK2 mitogen-activated protein kinase (MAPK) plays a central role in linking signals at the cell surface to activation of HIV-1 gene expression in latently infected cells. MAPK was activated by cytokines and phorbol 12-myristate 13-acetate in latently infected U1 cells. The induction of HIV-1 expression by these stimuli was inhibited by PD98059 and U0126, which are specific inhibitors of MAPK activation. Studies using constitutively active MEK or Raf kinase mutants demonstrated that MAPK activates the HIV-1 long terminal repeat (LTR) through the NF-kappaB sites. Most HIV-1 inducers activated NF-kappaB via a MAPK-independent pathway, indicating that activation of NF-kappaB is not sufficient to explain the activation of HIV-1 gene expression by MAPK. In contrast, all of the stimuli activated AP-1 via a MAPK-dependent pathway. NF-kappaB and AP-1 components c-Fos and c-Jun were shown to physically associate by yeast two-hybrid assays and electrophoretic mobility shift assays. Coexpression of NF-kappaB and c-Fos or c-Jun synergistically transactivated the HIV-1 LTR through the NF-kappaB sites. These studies suggest that MAPK acts by stimulating AP-1 and a subsequent physical and functional interaction of AP-1 with NF-kappaB, resulting in a complex that synergistically transactivates the HIV-1 LTR. These results define a mechanism for signal-dependent activation of HIV-1 replication in latently infected cells and suggest potential therapeutic strategies for unmasking latent reservoirs of HIV-1.  相似文献   

20.
Gao W  Sun W  Qu B  Cardona CJ  Powell K  Wegner M  Shi Y  Xing Z 《PloS one》2012,7(1):e30328
Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号