首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The concept of scaffolds that can be equipped with artificial biochemically active sites has gained recent interest in the field of protein design. Members of the lipocalin protein family represent promising model systems in this respect. Especially prototypic lipocalins, such as the retinol-binding protein or the bilin-binding protein (BBP), exhibit a structurally simple one-domain fold with a conformationally well conserved beta-barrel as their central motif. This type of supersecondary structure is made of a cylindrically closed beta-sheet of eight antiparallel strands. At the open end of the barrel the beta-strands are connected by four loops in a pairwise manner so that a pocket for the ligand is formed. In a rational protein design study a metal-binding site was functionally grafted on the solvent-exposed surface of the beta-barrel, whereby the rigid backbone conformation permitted the spatially defined arrangement of three His side chains. In a combinatorial protein design approach, the natural ligand pocket of a lipocalin was reshaped. In this manner variants of the BBP were engineered which exhibit high affinity and remarkable specificity for haptens like fluorescein and digoxigenin. The so-called 'anticalins', i.e. artificial lipocalins recognizing prescribed ligands, could provide an interesting alternative to recombinant antibody fragments. Consequently, the use of lipocalins as a scaffold opens new applications for members of this functionally diverse protein family in biotechnology and medicine.  相似文献   

3.
Lipocalins as allergens   总被引:4,自引:0,他引:4  
The term allergy refers to clinical conditions caused by an inappropriate immune response to innocuous proteins in genetically predisposed persons. Allergens of animal origin are responsible for a significant proportion of allergies. In recent years, it has become evident that practically all respiratory animal allergens characterized at the molecular level belong to the lipocalin family of proteins. The current list comprises the major allergens of horse, cow, dog, mouse, rat and cockroach as well as beta-lactoglobulin of cow's milk. While the molecular structure of all these allergens is known, far less information is available regarding their immunological characteristics. Knowing the way the immune system recognizes these allergens and reacts to them might, however, be the key for discovering the common denominator of the allergenicity of lipocalins. The human body contains numerous endogenous lipocalins, and the immune system has to adapt to their presence. We have proposed that under these conditions the immune response against the lipocalin allergens which are structurally related to endogenous lipocalins might be the pathway to allergy in genetically predisposed persons. The same might well apply also to other allergens with homologous endogenous counterparts.  相似文献   

4.
The RIO family of atypical serine protein kinases has been first characterized only recently. It consists of enzymes that contain a unique domain with a characteristic kinase sequence motif and usually some additional domains. At least two RIO proteins, Rio1 and Rio2, are present in organisms varying from Archaea to humans, with a third Rio3 subfamily present only in multicellular eukaryotes. Yeast Rio1 and Rio2 proteins have been implicated in the processing of 20 S pre-rRNA and are necessary for survival of the cells. Crystal structures of Archaeoglobus fulgidus Rio1 and Rio2 have shown that whereas the overall fold of these enzymes resembles typical protein kinases, some of the structural domains, particularly those involved in peptide substrate binding, are not present. The mode of binding of nucleotides also differs from that found in typical protein kinases. Although it has been shown that both Rio1 and Rio2 have the enzymatic activity of kinases and are capable of autophosphorylation, the biological substrates of RIO proteins and their full biological role still remain to be discovered.  相似文献   

5.
Lipocalins are mainly extracellular carriers of lipophilic molecules, though exceptions with properties like prostaglandin synthesis and protease inhibition are observed for specific lipocalins. The interest concerning lipocalins in cancer has so far been focussed to the variations in concentration and the modification of lipocalin expression in distinct cancer forms. In addition, lipocalins have been assigned a role in cell regulation. The influence of the extracellular lipocalins on intracellular cell regulation events is not fully understood, but several of the lipocalin ligands are also well-known agents in cell differentiation and proliferation. Lipophilic ligands can, after lipocalin-mediated transport to the cell surface, penetrate the cell membrane and interact with proteins in the cytosol and/or the nucleus. The signaling routes of the lipocalin ligands, retinoids and fatty acids are presented and discussed. Tumor growth in tissue is restricted by extracellular protease/protease inhibitor interactions. Several lipocalins also have protease inhibitory properties and possess the ability to interact with tumor specific proteases, revealing another pathway for lipocalins to interact with cancer cells.  相似文献   

6.
7.
8.
The concerted activities of kinases and phosphatases modulate the phosphorylation levels of proteins, lipids and carbohydrates in eukaryotic cells. Despite considerable effort, we are still missing a holistic picture representing, at a proteome level, the functional relationships between kinases, phosphatases and their substrates. Here we focus on phosphatases and we review and integrate the available information that helps to place the members of the protein phosphatase superfamilies into the human protein interaction network. In addition we show how protein interaction domains and motifs, either covalently linked to the phosphatase domain or in regulatory/adaptor subunits, play a prominent role in substrate selection.  相似文献   

9.
A PUF family portrait: 3'UTR regulation as a way of life   总被引:5,自引:0,他引:5  
In eukaryotic cells, mRNAs are exquisitely controlled, often through regulatory elements in their 3' untranslated regions (3'UTRs). Proteins that bind to those sites are key players in controlling mRNA stability, translation and localization. One family of regulatory proteins--the PUF proteins--are not only structurally related, but also bind to 3'UTRs and modulate mRNA expression in a wide variety of eukaryotic species. They do so either by enhancing turnover or repressing translation, and act combinatorially with other regulatory proteins. Here, we discuss the evolution, biological function and mechanisms of action of the PUF protein family, and suggest that a primordial function of PUF proteins is to sustain mitotic proliferation of stem cells.  相似文献   

10.
载脂蛋白在动物和微生物中已被广泛深入地研究,但在植物上的研究相对较少。自2002年人们从拟南芥和小麦中发现真正的植物载脂蛋白基因以来,其参与植物抗逆性方面的功能日益得到人们的重视。本文综合了近几年的研究结果,对植物载脂蛋白的结构、细胞定位、生物学功能及其起源进化作了简单综述,以期为植物载脂蛋白的研究和利用提供参考。  相似文献   

11.
The mammalian family X DNA polymerases (DNA polymerases beta, lambda, mu, and TdT) contribute to base excision repair and double-strand break repair by virtue of their ability to fill short gaps in DNA. Structural information now exists for all four of these enzymes, making this the first mammalian polymerase family whose structural portrait is complete. Here we consider how distinctive structural features of these enzymes contribute to their biological functions in vivo.  相似文献   

12.
Lipocalins as biochemical markers of disease   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X‐ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild‐type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand‐binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis‐phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme‐selective kinase inhibitors for mechanistic studies and therapeutic applications.  相似文献   

15.
16.
Protein kinases play a critical role in the integration of signaling networks in eukaryotic cells. cAMP-dependent protein kinase (PKA) serves as a prototype for this large and highly diverse enzyme family. The catalytic subunit of PKA provides the best example of how a protein kinase recognizes its substrates, as well as inhibitors, and also show how the enzyme moves through the steps of catalysis. Many of the relevant conformational states associated with the catalytic cycle which have been captured in a crystal lattice are summarized here. From these structures, we can begin to appreciate the molecular events of catalysis as well as the intricate orchestration of critical residues in the catalytic subunit that contribute to catalysis. The entire molecule participates. To fully understand signaling by PKA, however, requires an understanding of a large set of related proteins, not just the catalytic subunit. This includes the regulatory subunits that serve as receptors for cAMP and the A kinase anchoring proteins (AKAPs) that serve as scaffolds for PKA. The AKAPs localize PKA to specific sites in the cell by docking to the N-terminus of the regulatory subunits, thus creating microenvironments for PKA signaling. To fully appreciate the diversity and integration of these molecules, one needs not only high-resolution structures but also an appreciation of how these molecules behave in solution. Thus, in addition to obtaining high-resolution structures by X-ray crystallography and NMR, we have used fluorescent tools and also hydrogen/deuterium exchange coupled with mass spectrometry to probe the dynamic properties of these proteins and how they interact with one another. The molecular features of these molecules are described. Finally, we describe a new recombinantly expressed PKA reporter that allows us to monitor PKA activity in living cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号