首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Egg production by the cereal spider Erigone atra was used as a fitness parameter for evaluating the food quality of two species of Collembola: Folsomia fimetaria and Isotoma anglicana. Drosophila melanogaster was used as reference prey. We tested the hypothesis that due to differences in food quality, the two Collembola species would affect the reproduction of the spider differently. The quality ranking of the prey types turned out as: I. anglicana > D. melanogaster > F. fimetaria. With F. fimetaria alone, spiders were unable to maintain reproduction. E. atra was more efficient in utilising I. anglicana and D. melanogaster. Thus, daily consumption rates of I. anglicana were lower in spite of higher egg laying rates by E. atra. A mixed diet of F. fimetaria and D. melanogaster resulted in a lower reproductive output than a pure diet of D. melanogaster, indicating a toxic element in F. fimetaria. In the mixed diet F. fimetaria had a negative influence on the consumption capacity of the spider towards D. melanogaster, while D. melanogaster had a positive influence on the consumption capacity towards F. fimetaria. It is concluded that a high abundance of I. anglicana may support a high reproductive output of E. atra, while the presence, of F. fimetaria in fields may reduce the spider's reproductive output.  相似文献   

2.
Predation by generalist predators is difficult to study in the field because of the complex effects of positive and negative interactions within and between predator species and guilds. Predation can be monitored by molecular means, through identification of prey DNA within predators. However, polymerase chain reaction (PCR) amplification of prey DNA from predators cannot discriminate between primary and secondary predation (hyperpredation), in which one predator feeds on another that has recently eaten the target prey. Here we quantify, for the first time, the potential error caused by detection of prey DNA following secondary predation, using an aphid-spider-carabid model. First, the aphid Sitobion avenae was fed to the spider Tenuiphantes tenuis and the carabid Pterostichus melanarius, and the postconsumption detection periods, for prey DNA within predators, were calculated. Aphids were then fed to spiders and the spiders to carabids. Aphid DNA was detected in the predators using primers that amplified 245- and 110-bp fragments of the mitochondrial cytochrome oxidase I gene. Fragment size and predator sex had no significant effect on detection periods. Secondary predation could be detected for up to 8 h, when carabids fed on spiders immediately after the latter had consumed aphids. Beetles tested positive up to 4 h after eating spiders that had digested their aphid prey for 4 h. Clearly, the extreme sensitivity of PCR makes detection of secondary predation more likely, and the only reliable answer in future may be to use PCR to identify, in parallel, instances of intraguild predation.  相似文献   

3.
 Because cannibals are potentially both predator and prey, the presence of conspecifics and alternative prey may act together to influence the rate at which cannibals prey upon each other or emigrate from a habitat patch. Wolf spiders (Lycosidae) are cannibalistic-generalist predators that hunt for prey with a sit-and-wait strategy characterized by changes in foraging site. Little information is available on how both prey abundance and the presence of conspecifics influence patch quality for these cursorial, non-web-building spiders. To address this question, laboratory experiments were conducted with spiderlings and older juveniles of the lycosid genus Schizocosa. The presence of insect prey consistently reduced rates of spider emigration when spiders were housed either alone or in groups. Solitary juvenile Schizocosa that had been recently collected from the field exhibited a median giving-up time (GUT) of 10 h in the absence of prey (Collembola); providing Collembola increased the median GUT to 64 h. For solitary spiders, the absence of prey increased by about fourfold the rate of emigration during the first 24 h. In contrast, for spiders in patches with a high density of conspecifics, the absence of prey increased the 24-h emigration rate by only 1.6-fold. For successful cannibals in the no-prey patches, the presence of conspecifics improved patch quality by providing a source of food. Mortality by cannibalism was affected by both prey availability and openness of the patch to net emigration. In patches with no net emigration, the presence of prey reduced rates of cannibalism from 79% to 57%. Spiders in patches open to emigration but not immigration experienced a rate of cannibalism (16%) that was independent of prey availability. The results of these experiments indicate that for a cannibalistic forager such as the wolf spider Schizocosa, (1) the presence of conspecifics can improve average patch quality when prey are absent, and (2) cannibalism has the potential to be a significant mortality factor under natural field conditions because cannibalism persisted in prey patches that were open to emigration. Received: 12 April 1996 / Accepted: 14 August 1996  相似文献   

4.
As one of the most abundant predators of insects in terrestrial ecosystems, spiders have long received much attention from agricultural scientists and ecologists. Do spiders have a certain controlling effect on the main insect pests of concern in farmland ecosystems? Answering this question requires us to fully understand the prey spectrum of spiders. Next‐generation sequencing (NGS) has been successfully employed to analyze spider prey spectra. However, the high sequencing costs make it difficult to analyze the prey spectrum of various spider species with large samples in a given farmland ecosystem. We performed a comparative analysis of the prey spectra of Ovia alboannulata (Araneae, Lycosidae) using NGS with individual and mixed DNA samples to demonstrate which treatment was better for determining the spider prey spectra in the field. We collected spider individuals from tea plantations, and two treatments were then carried out: (1) The DNA was extracted from the spiders individually and then sequenced separately (DESISS) and (2) the DNA was extracted from the spiders individually and then mixed and sequenced (DESIMS). The results showed that the number of prey families obtained by the DESISS treatment was approximately twice that obtained by the DESIMS treatment. Therefore, the DESIMS treatment greatly underestimated the prey composition of the spiders, although its sequencing costs were obviously lower. However, the relative abundance of prey sequences detected in the two treatments was slightly different only at the family level. Therefore, we concluded that if our purpose were to obtain the most accurate prey spectrum of the spiders, the DESISS treatment would be the best choice. However, if our purpose were to obtain only the relative abundance of prey sequences of the spiders, the DESIMS treatment would also be an option. The present study provides an important reference for choosing applicable methods to analyze the prey spectra and food web compositions of animal in ecosystems.  相似文献   

5.
Aim We compiled data on prey utilization of spiders at a global scale to better understand the relationship between current climate or net primary production (NPP) and diet breadth, evenness and composition in spiders. We test whether the productivity and the diversity–climatic‐stability (DCS) hypotheses focusing on diversity patterns may also explain global patterns in prey utilization by web‐building and cursorial spiders. Location A global dataset of 95 data points from semi‐natural and natural terrestrial habitats spanning 41.3° S to 56.1° N. Methods We collected data on spider prey (29 groups, mostly order‐level invertebrate taxa) through extensive literature research to identify the relationship between climatic conditions and NPP and spider diets based on 66 studies of prey composition in 82 spider species. Results The number of prey groups in spider diets was positively related to NPP, after accounting for differences in sampling effort in the original studies. In general, diet breadth was significantly higher for spider species in tropical environments. Prey individuals in spider diets were more evenly distributed among different prey groups in warmer environments with lower fluctuations in precipitation. Collembola and other spiders were more common prey for spiders with a cursorial hunting mode. Myriapoda and Collembola were more common prey in cooler climates with more stable precipitation, whereas Isoptera, Lepidoptera, Psocoptera and Coleoptera showed the opposite pattern. Main conclusions The positive relationship between diet breadth and NPP and the negative relationship between prey evenness and seasonality in precipitation support the productivity and the DCS hypotheses, respectively. This effect on global patterns of invertebrate predator–prey interactions suggests that trophic interactions between spiders and their prey are sensitive to climatic conditions. Climatic conditions may not only affect spider community composition, but also considerably alter the functional role of these abundant invertebrate predators in terrestrial ecosystems.  相似文献   

6.
Trophic interactions may strongly depend on body size and environmental variation, but this prediction has been seldom tested in nature. Many spiders are generalist predators that use webs to intercept flying prey. The size and mesh of orb webs increases with spider size, allowing a more efficient predation on larger prey. We studied to this extent the orb‐weaving spider Araneus diadematus inhabiting forest fragments differing in edge distance, tree diversity, and tree species. These environmental variables are known to correlate with insect composition, richness, and abundance. We anticipated these forest characteristics to be a principle driver of prey consumption. We additionally hypothesized them to impact spider size at maturity and expect shifts toward larger prey size distributions in larger individuals independently from the environmental context. We quantified spider diet by means of metabarcoding of nearly 1,000 A. diadematus from a total of 53 forest plots. This approach allowed a massive screening of consumption dynamics in nature, though at the cost of identifying the exact prey identity, as well as their abundance and putative intraspecific variation. Our study confirmed A. diadematus as a generalist predator, with more than 300 prey ZOTUs detected in total. At the individual level, we found large spiders to consume fewer different species, but adding larger species to their diet. Tree species composition affected both prey species richness and size in the spider''s diet, although tree diversity per se had no influence on the consumed prey. Edges had an indirect effect on the spider diet as spiders closer to the forest edge were larger and therefore consumed larger prey. We conclude that both intraspecific size variation and tree species composition shape the consumed prey of this generalist predator.  相似文献   

7.
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short‐range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle‐web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.  相似文献   

8.
Noninvasive genetic sampling enables biomonitoring without the need to directly observe or disturb target organisms. This paper describes a novel and promising source of noninvasive spider and insect DNA from spider webs. Using black widow spiders (Latrodectus spp.) fed with house crickets (Acheta domesticus), we successfully extracted, amplified, and sequenced mitochondrial DNA from spider web samples that identified both spider and prey to species. Detectability of spider DNA did not differ between assays with amplicon sizes from 135 to 497 base pairs. Spider and prey DNA remained detectable at least 88 days after living organisms were no longer present on the web. Spider web DNA as a proof-of-concept may open doors to other practical applications in conservation research, pest management, biogeography studies, and biodiversity assessments.  相似文献   

9.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

10.
Numerous studies have found that predators can suppress prey densities and thereby impact important ecosystem processes such as plant productivity and decomposition. However, prey suppression by spiders can be highly variable. Unlike predators that feed on prey within a single energy channel, spiders often consume prey from asynchronous energy channels, such as grazing (live plant) and epigeic (soil surface) channels. Spiders undergo few life cycle changes and thus appear to be ideally suited to link energy channels, but ontogenetic diet shifts in spiders have received little attention. For example, spider use of different food channels may be highly specialized in different life stages and thus a species may be a multichannel omnivore only when we consider all life stages. Using stable isotopes, we investigated whether wolf spider (Pardosa littoralis, henceforth Pardosa) prey consumption is driven by changes in spider size. Small spiders obtained > 80% of their prey from the epigeic channel, whereas larger spiders used grazing and epigeic prey almost equally. Changes in prey consumption were not driven by changes in prey density, but by changes in prey use by different spider size classes. Thus, because the population size structure of Pardosa changes dramatically over the growing season, changes in spider size may have important implications for the strength of trophic cascades. Our research demonstrates that life history can be an important component of predator diet, which may in turn affect community- and ecosystem-level processes.  相似文献   

11.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

12.
Summary Previous research by many investigators has demonstrated food limitation in both web-building and wandering spiders. Field experiments have tested for exploitative competition for prey in web-building, but not wandering species. As a first step to examining the question of whether spiders without webs exhibit exploitative competition, we manipulated densities of young stages of a common wolf spider, Schizocos ocreata, and measured (1) spider growth rate and (2) numbers of Collembola, a potential prey organism. Replicate populations of recently hatched S. ocreata were established in 1-m2 fenced plots at four levels: 0×, 0.25×, 1× and 4× natural density. Increasing spider density had a negative effect on spider growth rate, defined as increase in weight or cephalothorax width. Early in the experiment spider density had a weak negative effect on Collembola numbers [p(F)=0.08]. Taken together, this probable response by Collembola and the clear effect of spider density on growth rate constitute the first experimental evidence of intraspecific exploitative competition for prey in a species of wandering spider. We discuss (1) the strength of this evidence given the constraints of the experiment's design, and (2) the implications of the strong convergence in spider densities that had occurred after 2.5 months.  相似文献   

13.
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity.Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species.Seventeen species of Collembola were identified from the nitrogen plus lime (N+L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N+L plots.Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N+L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots.The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N+L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.  相似文献   

14.
A molecular approach, using aphid-specific monoclonal antibodies, was used to test the hypothesis that alternative prey can affect predation on aphids by linyphiid spiders. These spiders locate their webs in cereal crops within microsites where prey density is high. Previous work demonstrated that of two subfamilies of Linyphiidae, one, the Linyphiinae, is web-dependent and makes its webs at sites where they were more likely to intercept flying insects plus those (principally aphids) falling from the crop above. The other, the Erigoninae, is less web-dependent, making its webs at ground level at sites with higher densities of ground-living detritivores, especially Collembola. The guts of the spiders were analysed to detect aphid proteins using enzyme-linked immunosorbent assay (ELISA). Female spiders were consuming more aphid than males of both subfamilies and female Linyphiinae were, as predicted, eating more aphid than female Erigoninae. Rates of predation on aphids by Linyphiinae were related to aphid density and were not affected by the availability of alternative prey. However, predation by the Erigoninae on aphids was significantly affected by Collembola density. Itinerant Linyphiinae, caught away from their webs, contained the same concentration of aphid in their guts as web-owners. However, nonweb-owning Erigoninae, living away from Collembola aggregations at web-sites, contained significantly higher concentrations of aphid. For both subfamilies there was evidence of a disproportionate increase in predation on aphids once Collembola populations had declined. It was concluded that nonaphid prey, by helping to maintain spiders in the field, can significantly affect predation on aphids.  相似文献   

15.
Quantitative approaches to predator–prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator–prey interactions. Here, we used spider–prey interactions as a model system to investigate whether different spider web architectures—orb, tangle, and sheet‐tangle—affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle‐web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet‐tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle‐web spiders than for orb and sheet‐tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator–prey interactions.  相似文献   

16.
Predicting whether a predator is capable of affecting the dynamics of a prey species in the field implies the analysis of the complete diet of the predator, not simply rates of predation on a target taxon. Here, we employed the Ion Torrent next‐generation sequencing technology to investigate the diet of a generalist arthropod predator. A complete dietary analysis requires the use of general primers, but these will also amplify the predator unless suppressed using a blocking probe. However, blocking probes can potentially block other species, particularly if they are phylogenetically close. Here, we aimed to demonstrate that enough prey sequence could be obtained without blocking probes. In communities with many predators, this approach obviates the need to design and test numerous blocking primers, thus making analysis of complex community food webs a viable proposition. We applied this approach to the analysis of predation by the linyphiid spider Oedothorax fuscus in an arable field. We obtained over two million raw reads. After discarding the low‐quality and predator reads, the libraries still contained over 61 000 prey reads (3% of the raw reads; 6% of reads passing quality control). The libraries were rich in Collembola, Lepidoptera, Diptera and Nematoda. They also contained sequences derived from several spider species and from horticultural pests (aphids). Oedothorax fuscus is common in UK cereal fields, and the results showed that it is exploiting a wide range of prey. Next‐generation sequencing using general primers but without blocking probes provided ample sequences for analysis of the prey range of this spider and proved to be a simple and inexpensive approach.  相似文献   

17.
This study tested the hypothesis that habitat structure dictates the distribution and community composition of arboreal arthropods. A diverse arthropod assemblage of Douglas-fir canopies, which included Araneae, Psocoptera, Collembola and Homoptera, was chosen as a model system. Habitat structural diversity, defined as needle density and branching complexity of Douglas-fir branches, was manipulated in a four-month experiment by needle removal, thinning and tying of branches. Abundance of canopy spiders declined significantly following needle density reduction and branch thinning, branch tying significantly increased spider abundance. Distinct habitat utilization patterns were found among individual spider guilds. Orb weavers (Araneidae) dominated spider assemblages in structurally simple habitats, whereas tied branches were colonized primarily by sheet-web weavers (Linyphiidae) and nocturnal hunting spiders (Anyphaenidae and Clubionidae). Spider species richness and average body size of several spider species increased in structurally more complex habitats. Arboreal spiders appeared to be limited by strong bottom-up effects in the form of habitat quality and, to a lesser degree, prey availability. Habitat manipulations did not affect densities or biomass of flying arthropod colonists in the branch vicinity. Needle removal and branch thinning led to a significant decline in the abundance of Psocoptera and Collembola. Tying of branches resulted in an eight-fold increase in Collembola numbers, organisms most sensitive to habitat alterations. Canopy habitat structure modified vertical dispersal of Collembola from forest litter, which may have significant implications for arboreal consumers. Our results lend strong support to the importance of habitat structural diversity in explaining general patterns of arthropod abundance and diversity on plants.  相似文献   

18.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   

19.
Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.  相似文献   

20.
Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号