首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite many studies demonstrating the effect of acclimation on behavioural or physiological traits, considerable debate still exists about the evolutionary significance of this phenomenon. One of the unresolved issues is whether acclimation to warmer temperature is beneficial at treatment or at more extreme test temperatures. To answer this question, we assessed the effect of thermal acclimation on preferred body temperatures ( T ps), maximum swimming and running speed, and critical thermal maximum ( CT max) in the Danube crested newt ( Triturus dobrogicus ). Adult newts were kept at 15 °C (control) and 25 °C (treatment) for 8 weeks prior to measurements. We measured T ps in an aquatic thermal gradient over 24 h, maximum speeds in a linear racetrack at six temperatures (5–33 °C), and CT max in a continuously heated water bath. T ps were higher in newts kept at 15 °C than in those kept at 25 °C. The maximum swimming speed did not acclimate. The maximum running speed at 30–33 °C was substantially higher in newts kept at 25 °C than in those kept at 15 °C. CT max increased with the treatment temperature. Hence, we conclude that the acclimation response to warm temperature is beneficial not at treatment but at more extreme temperatures in newts.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 627–636.  相似文献   

2.
Thermal tolerance of a northern population of striped bass Morone saxatilis   总被引:1,自引:0,他引:1  
Thermal tolerance of age 0+ year Shubenacadie River (Nova Scotia, Canada) striped bass Morone saxatilis juveniles (mean ± s . e . fork length, L F, 19·2 ± 0·2 cm) acclimated in fresh water to six temperatures from 5 to 30° C was measured by both the incipient lethal technique (72 h assay), and the critical thermal method ( C m). The lower incipient lethal temperature ranged from 2·4 to 11·3° C, and the upper incipient lethal temperature ( I U) from 24·4 to 33·9° C. The area of thermal tolerance was 618° C2. In a separate experiment, the I U of large age 2+ year fish (34·4 ± 0·5 cm L F) was 1·2 and 0·6° C lower ( P < 0·01) than smaller age 1+ year fish (21·8 ± 0·5 cm L F) at acclimation temperatures of 16 and 23° C. Using the C m, loss of equilibrium occurred at 27·4–37·7° C, loss of righting response at 28·1–38·4° C and onset of spasms at 28·5–38·8° C, depending on acclimation temperature. The linear regression slopes for these three responses were statistically similar (0·41; P > 0·05), but the intercepts differed (25·3, 26·0 and 26·5° C; P < 0·01). The thermal tolerance of this northern population appears to be broader than southern populations.  相似文献   

3.
Schooling chum salmon Oncorhynchus keta were biased towards the water surface (median position <1 m) under isothermal conditions (10° C) in a water column simulator (WCS). Thermal stratification (24/10° C) inhibited upward movement with fish congregating at the thermocline and displaying a clear avoidance of potentially lethal surface waters. A tri-phase model based on piece-wise nonlinear regression was used to describe the distribution shifts of chum salmon during a change from isothermal to thermally stratified conditions. Fish distribution was consistent with thermoregulatory behaviour and exhibited 'attraction', 'preference' and 'avoidance' phases. The thermal preference of 50% of the fish lay between 12·2 and 20·2° C, however, >83·5% of the fish occupied a 'preferred' temperature range of 13·7–17·9° C. The mean temperature at which 50% of chum salmon avoided rising temperature by shifting deeper in the water column and using the cooler thermocline was 20·2° C, and 90% avoidance occurred at 22·9° C. Behavioural responses to thermal stratification were consistent amongst underyearling fish of differing size and age.  相似文献   

4.
The chief objective was to determine the critical thermal limits for alevins, fry and parr of Arctic charr, Salvelinus alpinus , (L.) from four races living in Windermere (northwest England). The experimental fish were reared in a hatchery but were the progeny of wild parents. As comparisons between tethal temperatures at four acclimation temperatures (5, 10, 15, 20° C) revealed few significant racial differences, the data were pooled to estimate the lethal values for survival over 7 days (incipient lethal temperature) and over only 10 min (ultimate lethal temperature) for each life stage. Upper lethal values increased with acclimation temperatures for alevins but this effect was negligible for fry and parr, Alevins were generally less tolerant than fry and parr at lower, but not higher, acclimation temperatures; e.g. after acclimation at 5° C, mean upper ultimate values were 23·3, 25·1 and 25·7° C and mean upper incipient values were 18·7, 21·5 and 21·5° C for alevins, fry and parr respectively; after acclimation at 20° C, mean upper ultimate and incipient values were 26·2, 26·1 and 26·6° C and 20·8, 20·8 and 21·6° C for alevins, fry and parr respectively. The area of the temperature tolerance polygon (expressed as ° C2) for juvenile Arctic charr is amongst the lowest recorded for salmonids; being 409, 439 and 461° C2 for alevins, fry and parr respectively. These low values are due to lower upper tolerance limits, not high lower tolerance limits; the latter being close to 0° C (<1°C for parr and fry, <0·3° C for alevins) at all acclimation temperatures. Arctic charr are therefore amongst the least resistant of salmonids to high temperatures but probably the most resistant to low temperatures.  相似文献   

5.
Underyearling Lake Inari Arctic charr Salvelinus alpinus were acclimated to 11·0) C for 3 weeks, and then one group was maintained at 11·0) C and others were exposed to 14·4) Cconst, 17·7) Cconst or a diel fluctuating temperature of 14·3° C ± 1° C (14·3° Cfluc). Routine rates of oxygen consumption and ammonia excretion were measured over 10 days before the temperature change and over 31 days following the change. Measurements were made on fish that were feeding and growing. The temperature increase produced an immediate increase in oxygen consumption. There was then a decline over the next few days, suggesting that thermal acclimation was rapid. For groups exposed to constant temperature there was an increase in oxygen consumption ( M accl, mg kg−1 h−1) with increasing temperature ( T ), the relationship being approximated by an exponential model: M accl= 46·53e0·086 T . At 14·3° Cfluc oxygen consumption declined during the 3–4 days following the temperature shift, but remained higher than at 14·4° Cconst. This indicates that small temperature fluctuations have some additional influences that increase metabolic rate. Ammonia excretion rates showed diel variations. Excretion was lower at 11° Cconst than at other temperatures, and increases in temperature had a significant effect on ammonia excretion rate. Fluctuating (14·3° Cfluc) temperature did not influence ammonia excretion relative to constant temperature (14·4° Cconst).  相似文献   

6.
Abstract 1. Western tent caterpillars hatch in the early spring when temperatures are cool and variable. They compensate for sub-optimal air temperatures by basking in the sun.
2. Tent caterpillars have cyclic population dynamics and infection by nucleopolyhedrovirus (NPV) often occurs in populations at high density.
3. To determine whether climatic variation might influence viral infection, the environmental determinants of larval body temperature and the effects of temperature on growth and development rates and larval susceptibility to NPV were examined.
4. In the field, larval body temperature was determined by ambient temperature, irradiance, and larval stage. The relationship between larval body temperature and ambient temperature was curvilinear, a property consistent with, but not necessarily limited to, behaviourally thermoregulating organisms.
5. Larvae were reared at seven temperatures between 18 and 36 °C. Larval growth and development increased linearly with temperature to 30 °C, increased at a lower rate to 33 °C, then decreased to 36 °C. Pupal weights were highest for larvae reared between 27 and 30 °C.
6. The pathogenicity (LD50) of NPV was not influenced by temperature, but the time to death of infected larvae declined asymptotically as temperature increased.
7. Taking into account larval growth, the theoretical yield of the virus increased significantly between 18 and 21 °C then decreased slightly as temperatures increased to 36 °C.
8. Control and infected larvae showed no difference in temperature preference on a thermal gradient. The modes of temperature preference were similar to those for optimal growth and asymptotic body temperatures measured in the field on sunny days.
9. Warmer temperatures attained by basking may increase the number of infection cycles in sunny springs but do not protect larvae from viral infection.  相似文献   

7.
Ontogenetic changes in temperature preference of Atlantic cod   总被引:4,自引:0,他引:4  
Final thermal preferendum ( T ) experiments were conducted in a horizontal thermal gradient tank from the beginning of August 2001 to mid‐November 2001 using Atlantic cod Gadus morhua from 6·5 to 79·0 cm fork length ( L F). The value of T varied significantly ( P  < 0·005) with L F( T  = 7·23–0·054 L F), with smaller (younger) fish choosing higher temperatures than larger (older) fish. The preferendum varied from 6·9° C for fish of 6·5 cm to 3·0° C for those of 79·0 cm. Experiments comparing fish positions in the gradient tank between thermal gradients of 0·5–11·0 and 4·5–14·5° C demonstrated that fish positions were determined by temperature selection instead of undesirable tank effects. This study is the first to demonstrate the effect of ontogeny on temperature preferences of a marine fish species.  相似文献   

8.
The present study investigated the metabolic response of young ocean pout Zoarces americanus to temperature acclimation (3 v. 11° C), and to acute changes in water temperature from 3 to 17° C. The Q 10 value for standard metabolic rate between acclimation temperatures was 5·3, warm-acclimated fish displayed higher rates of oxygen uptake at all temperatures during the acute thermal challenge, and changes in whole-body citrate synthase activity were qualitatively similar to those seen for metabolism. These results indicate that, in contrast to temperate species, young ocean pout from Newfoundland do not show thermal compensation in response to long-term temperature changes.  相似文献   

9.
1 Larvae of Thaumetopoea pityocampa (Lepidoptera: Notodontidae) develop throughout the winter, although their feeding activity and survival can be impaired by adverse climatic factors. The present study investigated the survival at low temperature of larvae originating from a population with range expansion in an alpine valley in Northern Italy.
2 The supercooling point of individually analysed larvae averaged at −7 °C. This value insufficiently described the cold hardiness of the larvae; 39% of the tested larvae were alive when returned to room temperature immediately after freezing. When larval colonies inside their nest were exposed to −17 °C for 1 h after gradual temperature decrease, survival was 70.4%.
3 Rearing of larvae in the laboratory at different day/night temperatures indicated an effect of cumulative chill injury on larvae. A logistic regression explained the relationship between negative thermal sum (h°C below 0 °C) received in the laboratory experiment and larval survival. A similar relationship was demonstrated between negative thermal sum and survival of larval colonies in the field.
4 In the laboratory experiment, some tested larvae were able to survive for up to 8 weeks without feeding depending on rearing temperature. As expected, feeding occurred only when larvae were reared at temperatures of 9 °C day/0 °C night.
5 We classify the larvae of T. pityocampa as being moderate freezing tolerant. The winter behaviour allows this species to track climate warming by a rapid expansion into those areas that become compatible with the insect's development.  相似文献   

10.
Pinfish Lagodon rhomboides acclimation rates were determined by modelling changes in critical thermal minimum ( T crit min, ° C) estimates at set intervals following a temperature decrease of 3–4° C. The results showed that pinfish gained a total of 3·7° C of cold tolerance over a range of acclimation temperatures ( T acc, ° C) from (23–12° C), that cold tolerance increased with exposure time to the reduced temperature at all T acc, but that the rate of cold tolerance accruement (mean 0·14° C day−1) was independent of T acc. A highly significant ( P < 0·001) multivariate predictive model was generated that described the acclimation rates and thermal tolerance of pinfish exposed to reduction in water temperature: log10 T crit min= 0·41597 − 0·01704 T acc+ 0·04320 T plunge− 0·08376[log10 ( t + 1)], where T plunge is plunge temperature (° C) and t is the time (days). A comparison of the present data, with acclimation rate data for other species, suggests that factors such as latitude or geographic range may play a more important role than ambient temperature in determining cold acclimation rates in fishes.  相似文献   

11.
Hatchery cutthroat trout Oncorhynchus clarki clarki were used to examine the effects of 48 h and 3 week temperature acclimation periods on critical swimming speed ( U crit). The U crit was determined for fish at acclimation temperatures of 7, 14 and 18° C using two consecutive ramp‐ U crit tests in mobile Brett‐type swim tunnels. An additional group was tested at the stock's ambient rearing temperature of 10° C. The length of the temperature acclimation period had no significant effect on either the first or the second U crit( U crit‐1 and U crit‐2, respectively) or on the recovery ratio (the quotient of U crit‐2  U crit‐1−1). As anticipated, there was a significant positive relationship between U crit‐1 and temperature ( P  < 0·01) for both acclimation periods, and an increasing, though non‐significant, trend between U crit‐2 and temperature ( P  = 0·10). Acclimation temperature had no significant effect ( P  = 0·71) on the recovery ratio. These results indicate that a 48 h acclimation to experimental temperatures within the range of −3 to +8° C of the acclimation temperature may be sufficient in studies of swimming performance with this species. This ability to acclimate rapidly is probably adaptive for cutthroat trout and other species that occupy thermally variable environments.  相似文献   

12.
In short-horn sculpin Myoxocephalus scorpius , the power requirements for fast-start swimming and the length-specific velocity of the curvature wave travelling down the spine ( Û ) were not influenced significantly by acclimation to summer and winter conditions at test temperatures of 5 and 15° C. However, in-vivo and in-vitro muscle performance exhibited acclimation responses at 15° C. Seasonal acclimation altered the escape performance curves for power and Û significantly over a wider temperature range of 0·8–20° C. Û was significantly higher at 20° C in the summer- than winter-acclimation group. The acclimation of lower levels of physiological organization at 15° C may thus serve to extend the thermal limits for escape performance in summer acclimated fish.  相似文献   

13.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

14.
Underyearling Arctic charr were acclimated to six temperatures between 6 and 21·5°C and thermal tolerance and resistance were tested after an acclimation period of at least 2 weeks. Resistance times were influenced by acclimation temperature and the highest upper incipient lethal temperature was 23–24°C. An upper limit for cultivation of Lake Inari charr is suggested to be 21°C which is the intercept of the function which represents the upper limit of the thermal tolerance zone.  相似文献   

15.
The capacity of tropical whitespotted bamboo sharks Chiloscyllium plagiosum to metabolically compensate, at both the whole‐animal and biochemical levels, to prolonged exposure to temperatures higher (30° C) and lower (20 and 15° C) than their native temperature (24·5° C) was examined. As expected, whitespotted bamboo shark oxygen consumption increased upon exposure to 30° C and decreased at 20 and 15° C. Initial changes in oxygen consumption were maintained even after months at the experimental temperature, indicating that whitespotted bamboo sharks did not compensate metabolically to the experimental temperatures. Maximal activities and thermal sensitivity of citrate synthase and lactate dehydrogenase from whitespotted bamboo shark white locomotor muscle were similar between control animals maintained at 24·5° C and those maintained at 15° C, indicating that cold‐exposed animals did not compensate at the biochemical level. Similarly, lactate dehydrogenase activity did not change following prolonged exposure to 30° C. White muscle from whitespotted bamboo sharks maintained at 30° C had significantly lower citrate synthase activity than did control animals. This result was surprising given the lack of metabolic compensation at the whole‐animal level. Overall, whole‐animal oxygen consumption measurements supported the hypothesis that animals from thermally stable environments lacked the capacity to metabolically compensate to altered temperatures. Enzymatic results, however, suggested that the metabolic potential of muscle could change following temperature acclimation even in the absence of metabolic compensation at the whole‐animal level.  相似文献   

16.
1. Whether Drosophila larvae and pupae naturally experience temperatures that can cause heat damage or death is poorly understood, but bears directly on numerous investigations of the thermal biology and heat-shock response in Drosophila . Accordingly, the temperatures of necrotic fruit, which Drosophila larvae and pupae inhabit, the temperatures of larvae and pupae outside the laboratory, and the levels of the heat-shock protein hsp 70 expressed by larvae in nature were examined.
2. When necrotic fruit was sunlit, internal temperatures rose to levels that can harm indwelling insects. Fruit size and evaporative water loss affected these temperatures. Temperatures of larvae and pupae in the field commonly exceeded 35 °C, with living larvae recorded at >44°C and pupae at >41°C. Natural mortality was evident, presumably because of heat.
3. In the laboratory, these temperatures kill larvae rapidly, with LT50s (time taken for half the sample to be killed) of 30 min at 39 °C, 15 min at 40 °C and 8·5 min at 41 °C. Gradual transfer from 25°C to these temperatures resulted in no lesser mortality than did direct transfer.
4. Hsp 70 levels in lysates of whole larvae were measured by ELISA (enzyme-link immunosorbent assay) with an hsp 70-specific antibody. For larvae within necrotic apples experimentally transferred from shade to sun and within necrotic fruit in situ , hsp 70 levels equalled or exceeded levels detected in parallel laboratory studies of whole larvae or cells in culture.
5. These data provide an ecological context for studies of thermal stress and the heat-shock response in Drosophila that has heretofore been lacking.  相似文献   

17.
Aim:  To gain a better understanding of the survival and persistence of Enterobacter sakazakii in severe environments.
Methods and Results:  We evaluated the resistance of Ent. sakazakii to various environmental stresses, including heating, drying, water activity ( a w), and pH. The resistance of Ent. sakazakii to heat varies widely among strains. Most tested strains of Ent. sakazakii exhibited unusual resistance to dry stress, which depends on drying media. Growth of most strains occurred within 24 h at 37°C when the initial a w of the medium was adjusted to 0·94 with sucrose or sodium chloride. The minimum pH for growth within 24 h at 37°C was 3·9 or 4·1 for most strains tested. Additionally, there did not appear to be any relationship between resistance to stresses and biofilm-forming ability in Ent. sakazakii planktonic cells.
Conclusions:  These results indicate that Ent. sakazakii is much more resistant than other Enterobacteriaceae to environmental stresses. Moreover, it is likely that Ent. sakazakii has cross-resistance to dry and thermal stresses.
Significance and Impact of the Study:  The findings of this study will contribute to an improved understanding of the survival and behaviour of Ent. sakazakii , which will lead to improved strategies for preventing outbreaks of Ent. sakazakii infection.  相似文献   

18.
Many organisms respond to the heterogeneity of abiotic environmental conditions by plastic modifications of their phenotypes (acclimation or acclimatization). Despite considerable research efforts in this area, the beneficial (adaptive) effect of acclimation or acclimatization is still debated. We examined whether the development of newt larvae (Ichthyosaura alpestris) under different natural light and thermal conditions subsequently altered their susceptibility to predation in sun‐exposed versus shaded tanks in nature. During predation trials in various light and temperature conditions, newt larvae that developed in sun‐exposed warmer tanks consistently suffered from higher predation by dragonfly nymphs (Aeshna cyanea) compared to larvae from shaded or colder tanks. We conclude that higher sun exposure during embryonic and larval development negatively affects antipredator performance even in sun‐exposed tanks: this result is inconsistent with the beneficial acclimation hypothesis. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

19.
To evaluate developmental plasticity in thermal tolerance of zebrafish Danio rerio , common-stock zebrafish were reared from fertilization to adult in the five thermal regimes (two stable, two with constant diel cycles and one stochastic diel cycle) and their thermal tolerance at three acclimation temperatures compared. The energetic cost of developing in the five regimes was assessed by measuring body size over time. While acclimation accounted for most of the variability in thermal tolerance, there were also significant differences among fish reared in the different regimes, regardless of acclimation. Fish reared in more variable environments (as much as ±6° C diel cycle) had a greater tolerance than those from non-variable environments at the same mean temperature. Fish from the more variable environments were also significantly smaller than those from non-variable environments. These results indicate that the thermal history of individual zebrafish induces irreversible changes to the thermal tolerance of adults.  相似文献   

20.
Aims:  To design and build a thermoresistometer, named Mastia, which could perform isothermal and nonisothermal experiments.
Methods and Results:  In order to evaluate the thermoresistometer, the heat resistance of Escherichia coli vegetative cells and Alicyclobacillus acidoterrestris spores was explored. Isothermal heat resistance of E. coli was characterized by D 60°C = 0·38 min and z =  4·7°C in pH 7 buffer. When the vegetative cells were exposed to nonisothermal conditions, their heat resistance was largely increased at slow heating and fast cooling rates. Isothermal heat resistance of A. acidoterrestris was characterized by D 95°C = 7·4 min and z =  9·5°C in orange juice. Under nonisothermal conditions, inactivation was reasonably well predicted from isothermal data.
Conclusions:  The thermoresistometer Mastia is a very suitable instrument to get heat resistance data of micro-organisms under isothermal and nonisothermal treatments.
Significance and Impact of the Study:  The thermoresistometer Mastia can be a helpful tool for food processors in order to estimate the level of safety of the treatments they apply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号