首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The histidine operon of Salmonella typhimurium and its fragments were cloned in Escherichia coli cells on a multicopy plasmid. Expression of the cloned genes and histidine production by the variants possessing the hisG mutation which desensibilizes the ATP phosphoribosyl transferase for histidine were studied. Amplification of the complete operon including the hisG gene enables histidine accumulation of 2-3 g/l after 72 hours of fermentation.  相似文献   

7.
8.
Internal promoters of the his operon in Salmonella typhimurium.   总被引:10,自引:5,他引:5  
  相似文献   

9.
10.
11.
The spoT gene of Salmonella typhimurium has been identified. Mutations in spoT map between gltC and pyrE at 79 min. The spoT1 mutant has elevated levels of guanosine 5'-diphosphate-3'-diphosphate (ppGpp) during steady-state growth and exhibits a slower than normal decay of ppGpp after reversal of amino acid starvation. The spoT1 mutation elevates his operon expression but is distinct from known his regulatory mutations. Elevated his operon expression in spoT mutants causes resistance to the histidine analogs, 1,2,4-triazole-3-alanine and 3-amino-1,2,4-triazole. These properties of spoT mutants allowed us to identify and characterize additional spoT mutants. Approximately 40% of these mutants are temperature sensitive for growth on minimal medium, suggesting that the spoT function is essential or that excessive accumulation of ppGpp is lethal.  相似文献   

12.
Summary A genetic and enzymological study was made of five spontaneous prototrophic revertants of a tryptophan auxotroph of Salmonella typhimurium which carries a deletion extending from the closely linked supX locus into the trp operator-promoter region. The revertants were found to have regained initiation of expression of all five trp genes. Recombinational tests showed that in each case the genetic change responsible for re-initiation is cotransducible with the trp-cysB region of the chromosome. Two different mechanisms leading to re-initiation of trp gene expression were established: (a) an extension of the limits of the original deletion resulting in the fusion of the trp structural genes with a nearby gene or gene set located outside the operator end of trp, and (b) translocation of a duplicate set of the trp structural genes to other chromosomal sites, located operator-distal to the normal trp operon, in such a manner that they are functionally fused to foreign genetic units. One revertant which arose by mechanism (a) was shown to have an extended deletion with one new terminus in trp and the other in the nearby cysB locus. All the revertants exhibit constitutive expression of the trp enzymes, with activities varying among strains from five to forty five times greater than the fully repressed wild type level. The protein product of trpA, the first structural gene of the operon, appears to have been partially damaged by the re-initiation event in at least two strains, while in the other strains, the enzyme appears in preliminary tests to be indistinguishable from that of wild type.  相似文献   

13.
Abstract The cob operon in Salmonella typhimurium encodes 25 proteins involved in the biosynthesis of cobalamin. Expression of the cob operon is negatively feedback regulated by cobalamin via a translational control mechanism. The concentration of cobalamin required to repress cob expression to half-maximal was determined in vivo and in vitro to 0.4 μM and 0.6 μM, respectively. These results suggest that cob expression in wild-type cells is partially repressed by de novo synthesized cobalamin.  相似文献   

14.
15.
16.
17.
The hisD-hisC gene border of the Salmonella typhimurium histidine operon   总被引:7,自引:0,他引:7  
Summary We have sequenced the hisD-hisC gene border of the Salmonella typhimurium histidine operon. The translation termination codon of the hisD gene overlaps with the translation initiation codon of the hisC gene in the manner . The Shine-Dalgarno sequence of the hisC gene is contained entirely within hisD and there is no intercistronic space since all of the bases are utilized in coding. Two mutations that alter the hisD-hisC gene border are analyzed. Both mutations simultaneously abolish the termination codon of hisD and modify the initiation codon of hisC. One of the mutations changes the hisC initiation codon from AUG to AUU. The AUU codon is 10 to 20% as efficient as AUG for initiation of translation of the hisC gene. The mutant hisC ribosome binding site is compared to the ribosome binding site of the Escherichia coli infC gene which has been reported to contain an AUU initiation codon. The role of overlapping termination/initiation codons in regulating translation of polycistronic mRNAs in bacterial operons is discussed.  相似文献   

18.
19.
Regulation of Proline Degradation in Salmonella typhimurium   总被引:30,自引:22,他引:8       下载免费PDF全文
The pathway for proline degradation in Salmonella typhimurium appears to be identical to that found in Escherichia coli and Bacillus subtilis. Delta(1)-Pyrroline-5-carboxylic acid (P5C) is an intermediate in the pathway; its formation consumes molecular oxygen. Assays were devised for proline oxidase and the nicotinamide adenine dinucleotide phosphate-specific P5C dehydrogenase activities. Both proline-degrading enzymes, proline oxidase and P5C dehydrogenase, are induced by proline and are subject to catabolite repression. Three types of mutants were isolated in which both enzymes are affected: constitutive mutants, mutants with reduced levels of enzyme activity, and mutants unable to produce either enzyme. Most of the mutants isolated for their lack of P5C dehydrogenase activity have a reduced level of proline oxidase activity. All the mutations are cotransducible. A genetic map of some of the mutations is presented. The actual effector of the pathway appears to be proline.  相似文献   

20.
Regulation of Homocysteine Biosynthesis in Salmonella typhimurium   总被引:7,自引:4,他引:3       下载免费PDF全文
The regulation of the homocysteine branch of the methionine biosynthetic pathway in Salmonella typhimurium has been reexamined with the aid of a new assay for the first enzyme. The activity of this enzyme is subject to synergistic feedback inhibition by methionine plus S-adenosylmethionine. The synthesis of all three enzymes of the pathway is regulated by noncoordinate repression. The enzymes are derepressed in metJ and metK regulatory mutants, suggesting the existence of regulatory elements common to all three. Experiments with a methionine/vitamin B(12) auxotroph (metE) grown in a chemostat on methionine or vitamin B(12) suggested that the first enzyme is more sensitive to repression by methionine derived from exogenous than from endogenous sources. metB and metC mutants grown on methionine in the chemostat did not show hypersensitivity to repression by exogenous methionine. Therefore, it appears that the metE chemostat findings are peculiar to the phenotype of this mutant; such evidence suggests a possible role for a functional methyltetrahydrofolate-homocysteine transmethylase in regulating the synthesis of the first enzyme. Thus there appear to be regulatory elements which are common to the repression of all three enzymes, as well as some that are unique to the first enzyme. The nature of the corepressor is not known, but it may be a derivative of S-adenosylmethionine. metJ and metK mutants of Salmonella have a normal capacity for S-adenosylmethionine synthesis but may be blocked in synthesis or utilization of a corepressor derived from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号