首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

2.
Influence of agents inducing secretion: KCl-induced membrane depolarization and acetylcholine on catecholamine secretion from individual vesicles of rat chromaffin cells was studied by using amperometric methods. It has been shown that secretory components participating in these processes are different. An importance of cellular response on different kind of stimulation is discussed.  相似文献   

3.
Chan SA  Hill J  Smith C 《Cell calcium》2012,52(3-4):313-320
Neuroendocrine adrenal medullary chromaffin cells are a main output of the sympathetic nervous system. Acute stress activates the sympatho-adrenal stress reflex, excites adrenal chromaffin cells, and elicits catecholamine secretion into the circulation. Previous studies have demonstrated that stress-evoked serum catecholamine levels are greater in males. We investigated potential mechanistic bases for this gender dimorphism at the level of the adrenal medulla. We utilized in situ single-cell perforated patch voltage clamp to measure basic electrophysiological parameters that affect cell excitability. We found that chromaffin cells from male and female mice exhibit statistically identical depolarization-evoked calcium currents. However, the resting capacitance, an index of cell surface area, was significantly higher in cells from female mice. Thus the current density in female cells was significantly lower. We found that inhibition of protein kinase C, an enzyme shown to regulate both exocytosis and endocytosis, eliminates the cell surface area gender dimorphism. Finally, we performed kinetic simulations of the secretion process and report a predicted elevated secretory capacity in male cells. Thus, regulation of cell size may act to decrease cell excitability in female cells and may in-part represent the mechanistic basis for increased stress-evoked catecholamine secretion described in males.  相似文献   

4.
A fundamental process in neurosecretion is desensitization, or a declining response to a stimulus. The response of chromaffin cells to continuous nicotinic stimulation, secretion of catecholamines, desensitizes within a few minutes. The neuropeptide substance P (SP) has been reported to prevent desensitization in culture dish experiments and to enhance desensitization in patch clamp studies. In the present study, these contradictory responses have been demonstrated and the apparent contradictions resolved. We have measured catecholamine secretion by on-line electrochemical detection in a constant-pressure flow system. Isolated chromaffin cells cultured on quartz plates were stimulated with the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in the presence and absence of SP. SP inhibited secretion and increase the rate of desensitization compared with stimulation by DMPP alone. However, when the cells were stimulated a second time with DMPP alone immediately after 5-min stimulation with SP + DMPP, the rate of desensitization was markedly lower than the control. Removal of SP after a desensitizing stimulation with SP + DMPP caused a slow secondary release of catecholamine in response to the continued stimulation with DMPP. The kinetic analysis of the secretory response shows that the primary response to SP is enhanced desensitization, but that upon removal of SP the response to DMPP desensitizes less rapidly. We suggest that SP protects some receptors from nicotinic desensitization while holding them in an inactive state, and that upon removal of SP these receptors can slowly respond to DMPP.  相似文献   

5.
Barium ions enter chromaffin cells via voltage-sensitive calcium channels, although the intracellular site of barium action is distinct from that of calcium. The entry of barium primarily through voltage-sensitive channels was indicated by experiments showing inhibition of 133Ba2+ uptake by blockers of voltage-dependent calcium channels. In addition, 133Ba2+ uptake was stimulated by 50 mM KCl but not by nicotine. Furthermore, 133Ba2+ uptake was inhibited by hyperosmolarity, which specifically blocks the voltage-sensitive calcium channel but not the receptor-associated calcium channel. These conclusions from studies on barium uptake were also borne out by experiments measuring catecholamine secretion. Thus, blockers of voltage-dependent calcium channels which inhibited barium uptake also inhibited barium-induced catecholamine secretion. In other experiments, simultaneous stimulation with nicotine and barium in the presence of calcium evoked coincident and additive catecholamine secretion. By contrast, when 50 mM KCl was substituted for nicotine in the same experimental design, barium ions inhibited potassium-induced catecholamine secretion at low calcium concentrations. Only at high calcium concentrations were barium-induced and potassium-induced secretion additive. These data also indicate that barium and calcium compete at the voltage-sensitive pathway. Furthermore, these additivity data suggest that once inside the cell, barium and calcium have two distinct mechanisms of action. As predicted by this hypothesis, in digitonin-permeabilized chromaffin cells either calcium or barium stimulated catecholamine release, and in the presence of both cations catecholamine secretion was equivalent to the sum of secretion with either cation alone. Additional support of this concept comes from experiments showing that while calcium-mediated catecholamine secretion is sensitive to trifluoperazine and imipramine, barium-mediated secretion is not. Taken together, all these data indicate that there are two distinct intracellular sites of action for barium and calcium. In contrast to catecholamine secretion, non-exocytotic ascorbic acid secretion was induced by nicotine and potassium in the presence of calcium, but not by barium alone. These data provide additional evidence that barium acts by a different mechanism than calcium, in still another secretory system in chromaffin cells.  相似文献   

6.
We tested whether the giant secretory granules observed in the mast cells of the naturally occurring mutant beige mouse (BM) (C57BL/6N-bg) were also present in the adrenal chromaffin cells. The presence of large chromaffin granules (CG) would be a valuable tool for the study of exocytosis in neuronal tissues. Conversely, the observation of large vesicles within chromaffin cells that are different from CG could indicate that CG are of a different origin than granules of mast cells. Ultrastructural analysis demonstrated the presence of large lysososmal-like vesicles in the BM, and also a discrete increase in the number of CG with diameters larger than 240 nm but not of giant CG. In addition, amperometric measurements of single-event exocytosis, using carbon fiber microelectrodes, showed no differences between the quantal size of secretory events from BM and wildtype or bovine chromaffin cells. Minor but significant differences were found between the kinetics of exocytosis in BM cells andwild-type mouse cells. We conclude that CG, but not the abnormal-sized vesicles found in BM chromaffin cells contribute to the catecholamine secretion and that abnormal secretory granules are not present in adrenergic cell lineage.  相似文献   

7.
Abstract: Differential adrenaline (Ad) and noradrenaline (NA) secretions evoked by secretagogues were investigated using digitonin-permeabilized adrenal chromaffin cells, cultured adrenal chromaffin cells, and perfused adrenal glands of the ox. In digitonin-permeabilized cells, Ca2+ (0.8-160 μM) caused a concentration-dependent increase in catecholamine secretion, which was characterized by a predominance of NA over Ad secretion. Acetylcholine (10-1,000 μM), high K+ (14-56 μM), and bradykinin (0.1-1,000 μM) all were confirmed to induce the release of more NA than Ad at all concentrations used. There was no apparent difference in the ratios of NA/Ad between Ca2+-induced catecholamine secretion from digitonin-permeabilized cells and those induced by secretagogues from cultured cells. Qualitatively the same result was obtained in the secretory responses to acetylcholine and high K+ in perfused adrenal glands. These results indicate that the effectiveness of Ca2+ for catecholamine secretion is higher in the secretory apparatus of NA cells than in that of Ad cells of the bovine adrenal medulla. This may be one of the reasons why the secretagogues cause a predominance of NA secretion over Ad secretion in the bovine adrenal medulla.  相似文献   

8.
The cytosolic free calcium concentration ([Ca2+]i) and exocytosis of chromaffin granules were measured simultaneously from single, intact bovine adrenal chromaffin cells using a novel technique involving fluorescent imaging of cocultured cells. Chromaffin cell [Ca2+]i was monitored with fura-2. To simultaneously follow catecholamine secretion, the cells were cocultured with fura-2-loaded NIH-3T3t cells, a cell line chosen because of their irresponsiveness to chromaffin cell secretagogues but their large Ca2+ response to ATP, which is coreleased with catecholamine from the chromaffin cells. In response to the depolarizing stimulus nicotine (a potent secretagogue), chromaffin cell [Ca2+]i increased rapidly. At the peak of the response, [Ca2+]i was evenly distributed throughout the cell. This elevation in [Ca2+]i was followed by a secretory response which originated from the entire surface of the cell. In response to the inositol 1,4,5-trisphosphate (InsP3)-mobilizing agonist angiotensin II (a weak secretagogue), three different responses were observed. Approximately 30% of chromaffin cells showed no rise in [Ca2+]i and did not secrete. About 45% of the cells responded with a large (greater than 200 nM), transient elevation in [Ca2+]i and no detectable secretory response. The rise in [Ca2+]i was nonuniform, such that peak [Ca2+]i was often recorded only in one pole of the cell. And finally, approximately 25% of cells responded with a similar Ca2+-transient to that described above, but also gave a secretory response. In these cases secretion was polarized, being confined to the pole of the cell in which the rise in [Ca2+]i was greatest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We tested the hypothesis that endogenously produced hydrogen sulfide (H(2)S) can potentially contribute to the adrenergic stress response in rainbow trout by initiating catecholamine secretion from chromaffin cells. During acute hypoxia (water Po(2) = 35 mmHg), plasma H(2)S levels were significantly elevated concurrently with a rise in circulating catecholamine concentrations. Tissues enriched with chromaffin cells (posterior cardinal vein and anterior kidney) produced H(2)S in vitro when incubated with l-cysteine. In both tissues, the production of H(2)S was eliminated by adding the cystathionine beta-synthase inhibitor, aminooxyacetate. Cystathionine beta-synthase and cystathionine gamma-lyase were cloned and sequenced and the results of real-time PCR demonstrated that with the exception of white muscle, mRNA for both enzymes was broadly distributed within the tissues that were examined. Electrical field stimulation of an in situ saline-perfused posterior cardinal vein preparation caused the appearance of H(2)S and catecholamines in the outflowing perfusate. Perfusion with the cholinergic receptor agonist carbachol (1 x 10(-6) M) or depolarizing levels of KCl (1 x 10(-2) M) caused secretion of catecholamines without altering H(2)S output, suggesting that neuronal excitation is required for H(2)S release. Addition of H(2)S (at concentrations exceeding 5 x 10(-7) M) to the perfusion fluid resulted in a marked stimulation of catecholamine secretion that was not observed when Ca(2+)-free perfusate was used. These data, together with the finding that H(2)S-induced catecholamine secretion was unaltered by the nicotinic receptor blocker hexamethonium, suggest that H(2)S is able to directly elicit catecholamine secretion via membrane depolarization followed by Ca(2+)-mediated exocytosis.  相似文献   

10.
Abstract: The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of ACh but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   

11.
Changes in plasma membrane potential of isolated bovine adrenal chromaffin cells were measured independently by two chemical probe methods and related to corresponding effects on catecholamine secretion. The lipophilic cation tetraphenylphosphonium (TPP+) and the carbocyanine dye 3,3'-dipropylthiadicarbocyanine [DiS-C3-(5)] were used. The necessity of evaluating the subcellular distribution of TPP+ among cytoplasmic, mitochondrial, secretory granule, and bound compartments was demonstrated and the resting plasma membrane potential determined to be -55 mV. The relationship between membrane potential and catecholamine secretion was determined in response to variations in extracellular K+ and to the presence of several secretagogues including cholinergic receptor ligands, veratridine, and ionophores for Na+ and K+. The dependence of potential on K+ concentration fit the Goldman constant field equation with a Na/K permeability ratio of 0.1. The dependence of both K+- and veratridine-evoked catecholamine secretion on membrane potential exhibited a potential threshold of about -40 mV before a significant rise in secretion occurred. This is likely related to the threshold for opening of voltage-sensitive Ca2+ channels. Acetylcholine and nicotine evoked a large secretory response without a sufficiently sustained depolarization to be detectable by the relatively slow potential sensitive chemical probes. Decamethonium induced a detectable depolarization of the chromaffin cells. Veratridine and gramicidin evoked both membrane depolarization and catecholamine release. By contrast the K ionophore valinomycin evoked significant levels of secretion without any depolarization. This is consistent with its utilization of an intracellular source of Ca2+ and the independence of its measured secretory response on extracellular Ca2+.  相似文献   

12.
Abstract: Chromaffin cells implanted into the CNS have been used as a potential source of sustained catecholamine delivery, although their survival and continued catecholamine secretion are controversial. In addition, chromaffin cells exhibit a high degree of neurochemical plasticity in response to environmental factors. The present aims were to determine whether the CNS provides a supportive environment for sustained catecholamine production in transplanted chromaffin cells and to assess whether this novel environment alters patterns of catecholamine secretion. Catecholamine release from bovine chromaffin cells implanted into the rat midbrain was determined in brain slices. In addition, alterations in catecholamine secretion patterns, particularly adrenaline/noradrenaline ratios, were compared in vitro versus in transplants. Results indicated that brain slices containing chromaffin cell implants released high basal and nicotine-stimulated levels of adrenaline and noradrenaline. It is surprising that although adrenaline/noradrenaline ratios steadily declined in culture, this did not occur when cells were transplanted to the CNS in the early postharvesting phases. However, if cells were transplanted following longer periods in culture, adrenaline/noradrenaline ratios remained low. Together, these results suggest that the CNS can provide a supportive environment for chromaffin cell survival and that the pattern of catecholamine secretion can be optimized by prior in vitro manipulation.  相似文献   

13.
The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of Ach but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   

14.
Carbamylcholine-stimulated catecholamine release from adrenal chromaffin cells was completely inhibited by pretreatment of the cells for 10 min with 1 μM calmidazolium. Catecholamine release due to 55 mM K+ and ionophore A23187 was also inhibited by calmidazolium but less effectively than release due to carbamylcholine. Inhibition of release appeared to be due to an effect of calmidazolium on a step distal to Ca2+ entry, since the carbamylcholine-stimulated rise in the concentration of intracellular free calcium, monitored using quin-2, was unaffected by calmidazolium. The possibility was considered that calmidazolium inhibited secretion through an effect on protein kinase C rather than calmodulin. However, the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), had no demonstrable effect on catecholamine release, arguing against a significant role for protein kinase C in secretion from adrenal chromaffin cells. These results give further support to the notion that calmodulin plays a role in the secretory process in chromaffin cells.  相似文献   

15.
Hyperosmotic solutions inhibit exocytosis of catecholamine from adrenal chromaffin cells at a step after Ca2+ entry into the cells. The possibility that the inhibition resulted from an inability of shrunken secretory granules to undergo exocytosis was investigated in cells with plasma membranes permeabilized by digitonin. The osmoticants and salts used in this study rapidly equilibrated across the plasma membrane and bathed the intracellular organelles. When sucrose was the osmoticant, secretion was not significantly inhibited unless the osmolality was raised above 1,000 mOs. When the osmolality was raised with the tetrasaccharide stachyose or a low-molecular-weight maltodextrin fraction (average size a tetrasaccharide), one-half maximal inhibition occurred at 900-1,000 mOs. Prior treatment of permeabilized cells with Ca2+ in hyperosmotic solution did not result in enhanced secretion when cells were restored to normal osmolality. Increased concentrations of potassium glutamate or sodium isethionate were more potent than carbohydrate in inhibiting secretion. Half-maximal inhibition occurred at 600-700 mOs or when the ionic strength was approximately doubled. The inhibition by elevated potassium glutamate also occurred when the osmolality was kept constant with sucrose. Increasing the ionic strength did not alter the Ca2+ sensitivity of the secretory response. Reducing the ionic strength by substituting sucrose for salt reduced the Ca2+ concentration required for half-maximal stimulated secretion from approximately 1.2 microM to 0.5 microM. Chromaffin granules, the secretory granules, are known to shrink in hyperosmotic solution. The experiments indicate that shrunken chromaffin granules can undergo exocytosis and suggest that in intact cells elevated ionic strength rather than chromaffin granule shrinkage contributes to the inhibition of secretion by hyperosmotic solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

17.
Chromaffin cells cultured in serum-free medium secreted a smaller percentage of their catecholamine stores in response to stimulation by high K+ (55 mM) than did cells cultured in serum-containing medium. Addition of insulin-like growth factor-I (IGF-I) to serum-free medium restored high K(+)-stimulated catecholamine secretion to the levels seen in serum-treated cultures. In contrast, addition of IGF-I to serum-containing medium had little effect on catecholamine secretion. These results suggest that serum contains IGF-I or another factor that maintains the secretory responsiveness of chromaffin cells. IGF-I not only enhanced high K(+)-stimulated catecholamine secretion, but also augmented secretion elicited by the nicotinic agonist dimethyl-phenylpiperazinium, the dihydropyridine agonist Bay K 8644, and Ba2+. IGF-I did not affect the dependence of catecholamine secretion on extracellular Ca2+ concentration nor did it affect the time course of secretion. Experiments using 45Ca2+ demonstrated that IGF-I treatment enhanced Ca2+ uptake into the cells. When cells were permeabilized by treatment with digitonin, Ca2(+)-dependent catecholamine secretion was slightly, but consistently, greater from IGF-I-treated cells than from untreated cells. Our results suggest that IGF-I may enhance catecholamine secretion partly by increasing Ca2+ entry into the cells and partly by affecting a step distal to Ca2+ entry.  相似文献   

18.
Y N Wu  P D Wagner 《FEBS letters》1991,282(1):197-199
Incubation of digitonin-permeabilized bovine chromaffin cells results in a loss of Ca(2+)-dependent catecholamine secretion. The addition of cytosolic proteins prevents this loss of secretory activity. It has been proposed that calpactin might be the protein which is responsible for preventing this loss of activity. The experiments described in this paper show that cytosolic proteins which have been depleted of calpactin are as effective as control cytosolic proteins in preventing the loss of Ca(2+)-dependent secretion. Thus, a cytosolic protein(s) other than calpactin appears to be responsible for preventing this loss of secretory activity.  相似文献   

19.
20.
To study the role of intracellular pH (pHi) in catecholamine secretion and the regulation of pHi in bovine chromaffin cells, the pH-sensitive fluorescent indicator [2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein] was used to monitor the on-line changes in pHi. The pHi of chromaffin cells at resting state is approximately 7.2. The pHi was manipulated first by incubation of the cells with NH4+, and then the solution was replaced with a NH4(+)-free solution to induce acidification of the cytoplasm. The pHi returned toward the basal pH value after acidification within 5-10 min in the presence of Na+ or Li+, but the pHi stayed acidic when Na(+)-free buffers were used or in the presence of amiloride and its analogues. These results suggest that the pH recovery process after an acid load is due to the Na+/H+ exchange activity in the plasma membrane of the chromaffin cells. The catecholamine secretion evoked by carbachol and Na+ removal was enhanced after the cytoplasm had been made more acidic. It appears that acidic pH favors the occurrence of exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号