首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.  相似文献   

2.
Crossovers mediate the accurate segregation of homologous chromosomes during meiosis. The widely conserved pch2 gene of Drosophila melanogaster is required for a pachytene checkpoint that delays prophase progression when genes necessary for DSB repair and crossover formation are defective. However, the underlying process that the pachytene checkpoint is monitoring remains unclear. Here we have investigated the relationship between chromosome structure and the pachytene checkpoint and show that disruptions in chromosome axis formation, caused by mutations in axis components or chromosome rearrangements, trigger a pch2-dependent delay. Accordingly, the global increase in crossovers caused by chromosome rearrangements, known as the “interchromosomal effect of crossing over,” is also dependent on pch2. Checkpoint-mediated effects require the histone deacetylase Sir2, revealing a conserved functional connection between PCH2 and Sir2 in monitoring meiotic events from Saccharomyces cerevisiae to a metazoan. These findings suggest a model in which the pachytene checkpoint monitors the structure of chromosome axes and may function to promote an optimal number of crossovers.  相似文献   

3.
Sinorhizobium meliloti of the order Rhizobiales is a symbiotic nitrogen-fixing bacterium nodulating plants of the genera Medicago, Trigonella and Melilotus and hence is of great agricultural importance. In its free-living state it is motile and capable of modulating its movement patterns in response to chemical attractants. Here, the draft genome consisting of a circular chromosome, the megaplasmids pSymA and pSymB and three accessory plasmids of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis, is reported.  相似文献   

4.
5.
Mitotic chromosome numbers are reported from 25 vascular plant taxa, endemic to the Balearic Islands that are poorly known cytogenetically. The chromosome numbers ofAnthyllis vulneraria subsp.balearica (2n=12),Cymbalaria fragilis (2n=56), andPolygonum romanum subsp.balearicum (2n=40) were determined for the first time. A new chromosome number was found in several populations ofAnthyllis hystrix (2n=70) suggesting that this species is decaploid, in contrast to an earlier work reporting a higher ploidy level (2n=12x=84). The new chromosome number 2n=32 was reported inHypericum hircinum subsp.cambessedesii. It is suggested that the previous count (2n=40) could be explained by the presence of anomalous pentaploid cells in some tissues, contrating with the presence of a regular tetraploid complement (2n=32). Cytogenetic observations suggest thatSibthorpia africana has a diploid chromosome complement of 2n=18, with 0–2 accessory chromosomes. Accessory chromosomes are also reported forPhlomis italica, being the first record of B chromosomes in this genus. Chromosomal instability was found inGalium crespianum andG. friedichii species, with three numbers 2n=44, 55 and 66. Two cytotypes differing in ploidy level were documented within single plants. It is suggested that both species share a regular complement of 2n=44 and that the past hybridization events and formation of regenerating roots from the typical rootstock ofG. crespianum andG. friedrichii could be involved in the genesis of chromosome variants through partial endopolyploidy and concomitant somatic segregation.  相似文献   

6.
A pangenome is the complete set of genes (core and accessory) present in a phylogenetic clade. We hypothesize that a pangenome’s accessory gene content is structured and maintained by selection. To test this hypothesis, we interrogated the genomes of 40 Pseudomonas species for statistically significant coincident (i.e., co-occurring/avoiding) gene patterns. We found that 86.7% of common accessory genes are involved in 1 coincident relationship. Further, genes that co-occur and/or avoid each other—but are not vertically inherited—are more likely to share functional categories, are more likely to be simultaneously transcribed, and are more likely to produce interacting proteins, than would be expected by chance. These results are not due to coincident genes being adjacent to one another on the chromosome. Together, these findings suggest that the accessory genome is structured into sets of genes that function together within a given strain. Given the similarity of the Pseudomonas pangenome with open pangenomes of other prokaryotic species, we speculate that these results are generalizable.  相似文献   

7.
Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, a growing disease problem in global rice production. To better understand its genome-scale characteristics, the genome of the highly virulent B. glumae strain 336gr-1 isolated from Louisiana, USA was sequenced using the Illumina Genome Analyser II system. De novo assembled 336gr-1 contigs were aligned and compared with the previously sequenced genome of B. glumae strain BGR1, which was isolated from an infected rice plant in South Korea. Comparative analysis of the whole genomes of B. glumae 336gr-1 and B. glumae BGR1 revealed numerous unique genomic regions present only in one of the two strains. These unique regions contained accessory genes including mobile elements and phage-related genes, and some of the unique regions in B. glumae BGR1 corresponded to predicted genomic islands. In contrast, little variation was observed in known and potential virulence genes between the two genomes. The considerable amount of plasticity largely based on accessory genes and genome islands observed from the comparison of the genomes of these two strains of B. glumae may explain the versatility of this bacterial species in various environmental conditions and geographic locations.  相似文献   

8.

Background

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.

Results

We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.

Conclusions

The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.  相似文献   

9.
Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein–protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.

An investigation of the mechanism of accessory fruit initiation in diploid strawberry, identifying the function of two hormone signaling genes in fruit initiation.  相似文献   

10.
G. Ladizinsky 《Chromosoma》1974,47(1):109-117
Genome relationships between the three diploid oats, Avena strigosa (S.), A. longiglumis (L.) and A. prostrata (P.) were studied by chromosome pairing in diploid hybrids and in synthetic triploids and tetraploids combining these genomes. Fairly regular pairing in the diploid hybrid and typical autopolyploid behavior in the triploids and in the amphidiploid suggest small differentiation in the chromosome architecture of A. longiglumis and A. prostrata. A. strigosa diverges from the other two oats by complex chromosome rearrangements. Conspicuous preferential pairing took place in triploids with SSL, SSP and SPP genomic constitution. The low bivalent frequency in the SLL triploid suggests that preferential pairing in triploids with two S genomes is not a consequence of chromosome rearrangement but is rather of genetic origin. The presence of the three genomes in a triploid or a tetraploid caused considerable meiotic irregularities suggesting a better pairing competition of the S genome.  相似文献   

11.
The bacteriophage T4 has served as an in vitro model for the study of DNA replication for several decades, yet less is known about this process during infection. Recent work has shown that viral DNA synthesis is initiated from at least five origins of replication distributed across the 172 kb chromosome, but continued synthesis is dependent on recombination. Two proteins are predicted to facilitate loading of the hexameric 41 helicase at the origins, the Dda accessory helicase and the 59 loading protein. Using a real time, genome-wide assay to monitor replication during infections, it is shown here that dda mutant viruses no longer preferentially initiate synthesis near the origins, implying that the Dda accessory helicase has a fundamental role in origin selection and activation. In contrast, at least two origins function efficiently without the 59 loading protein, indicating that other factors load the 41 helicase at these loci. Hence, normal T4 replication includes two mechanistically distinct classes of origins, one requiring the 59 helicase loader, and a second that does not. Since both mechanisms require an additional factor, repEB, for sustained activation, normal T4 origin function appears to include at least three common elements, origin selection and initial activation, replisome loading, and persistence.  相似文献   

12.
Morphological features of 41 local populations of thePoa macrocalyx complex from the seasides of Hokkaido were analyzed with special reference to the following seven characters: spikelet length, number of florets per spikelet, relative length of side nerves to the entire length of the first glume, that of the second glume, length ratio of the second glume to a spikelet, ratio of length of the closed part vs. entire length of leaf sheaths, and scabrousness of panicle branches and pedicels. All of these characters varied continuously, and considerable degrees of variability within a population were observed. However, separation of populations into three groups became evident when the data were subjected to principal component analysis and also to a method of examination which was devised for identification of a population (not an individual) of this complex. The three groups that resulted from morphological studies were exactly in parallel with the grouping of populations supported by differences of chromosome numbers and geographical distribution. Evolutionary differentiation of this complex was discussed in connection with polyploidy and gametophytic apomixis. As a result of taxonomic considerations, the plants were arranged in three emended varieties of one species:Poa macrocalyx var.fallax, P. m. var.tatewakiana, P.m. var.scabriflora.  相似文献   

13.
Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32’s participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutantssuppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.  相似文献   

14.
The normal morphology of the polytene chromosomes of the embryo suspensor of Phaseolus coccineus is that of a tightly condensed cord with heavily Feulgen staining centromeric heterochromatic regions (α-heterochromatin) and other accessory heterochromatic regions (β-heterochromatin). The replication pattern of the chromosomes has been determined by autoradiographic analysis of material pulsed with 3H-thymidine for various lengths of time. The DNA replication cycle reqires 4–6 hours for completion. During replication chromosome structure becomes diffuse and the β-heterochromatic regions are indistinguishable from the euchromatic regions. The euchromatin is the first to replicate, and replication begins simultaneously at numerous sites in the euchromatin. The β-heterochromatin replicates next, and finally the centromeric heterochromatin. Replication is essentially complete in each of these parts of the chromosome before DNA synthesis begins in the next. The chromosomes are composed of numerous longitudinally running Feulgen positive strands, the equivalent portions of which replicate simultaneously. This indicates that there must be close control of the replication cycle in sister strands.  相似文献   

15.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

16.
A T Branco  Y Tao  D L Hartl  B Lemos 《Heredity》2013,111(1):8-15
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.  相似文献   

17.

Background

Rhizobium leguminosarum is an α-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841.

Results

The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens.

Conclusion

Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.  相似文献   

18.
The extent of chromosome rearrangements in Pyrococcus isolates from marine hydrothermal vents in Vulcano Island, Italy, was evaluated by high-throughput genomic methods. The results illustrate the dynamic nature of the genomes of the genus Pyrococcus and raise the possibility of a connection between rapidly changing environmental conditions and adaptive genomic properties.  相似文献   

19.
BSND encodes barttin, an accessory subunit of renal and inner ear chloride channels. To date, all mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness. We identified a BSND mutation (p.I12T) in four kindreds segregating nonsyndromic deafness linked to a 4.04-cM interval on chromosome 1p32.3. The functional consequences of p.I12T differ from BSND mutations that cause renal failure and deafness in Bartter syndrome type IV. p.I12T leaves chloride channel function unaffected and only interferes with chaperone function of barttin in intracellular trafficking. This study provides functional data implicating a hypomorphic allele of BSND as a cause of apparent nonsyndromic deafness. We demonstrate that BSND mutations with different functional consequences are the basis for either syndromic or nonsyndromic deafness.  相似文献   

20.

Background

Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood.

Results

In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences.

Conclusion

Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号