首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic deoxyfluoro derivatives of methyl - -glucopyranoside, as well as methyl -glycosides of isomalto-oligosaccharides, some having fluorine substituted for hydroxyl groups at selected positions, have been evaluated for their binding with a myeloma monoclonal IgA known to bind only to an oligosaccharide sequence at the nonreducing end of -(1→6)-linked -glucopyranans (dextrans). The results are compatible with the antibody's possessing one subsite of high affinity for its -glucosyl group, the remaining three subsites having low affinities for their respective -glucosyl residues. The high-affinity antibody-subsite occurs at the interior end of the sequence of four subsites, appears to be relatively accessible, and binds the (terminal) nonreducing -glucosyl group of the oligosaccharidic determinant using two, and possibly three, hydroxyl groups in hydrogen bonding.  相似文献   

2.
Four mouse hybridomas specific for alpha(1----6)dextran, 16.4.12E (IgA kappa, C57BL/6), 28.4.10A (IgM kappa, BALB/c), 35.8.2H (IgG1 kappa, BALB/c), and 36.1.2D (IgM kappa, BALB/c) were obtained by immunization with the T-dependent Ag isomaltohexaose or isomaltotriose coupled to keyhole limpet hemocyanin or to BSA. Immunochemical characterization of the hybridoma antibodies showed that 16.4.12E and 36.1.2D had cavity-type combining sites, recognizing the terminal non-reducing end of alpha(1----6)dextran, whereas 28.4.10A and 35.8.2H had groove-type sites, recognizing internal linear segments of the dextran. The V region cDNA of the H and L chains of the antibodies were cloned and sequenced. VH of 16.4.12E and VH of 36.1.2D belonged to the X24 and Q52 germ-line gene families, respectively. The VH and V kappa sequences of 16.4.12E and V kappa sequence of 36.1.2D were highly homologous to those of W3129, the only anti-alpha(1----6)dextran mAb with a cavity-type site thus far sequenced; 16.4.12E differed from W3129 in the D, JH, and J kappa. VH genes of 28.4.10A and 35.8.2H were homologous to those of several anti-alpha(1----6)dextrans with groove-type sites, but belonged to the J558 germ-line gene family, differed from the other J558 anti-alpha(1----6)dextrans, probably representing a different germ-line subfamily. The L chain sequence of 28.4.10A encoded by V kappa-Ars and J kappa 2 was almost identical to other groove-type anti-alpha(1----6)dextrans obtained by immunizing with the T-independent glycolipid Ag, stearyl-isomaltotetraose. Use of T-dependent Ag such as isomaltosyl oligosaccharide-protein conjugates provides an additional parameter for probing the fine structure of antibody combining sites and evaluating the V-gene repertoire of anti-alpha(1----6)dextrans.  相似文献   

3.
Rice BGlu1 β-glucosidase is an oligosaccharide exoglucosidase that binds to six β-(1→4)-linked glucosyl residues in its active site cleft. Here, we demonstrate that a BGlu1 E176Q active site mutant can be effectively rescued by small nucleophiles, such as acetate, azide and ascorbate, for hydrolysis of aryl glycosides in a pH-independent manner above pH 5, consistent with the role of E176 as the catalytic acid–base. Cellotriose, cellotetraose, cellopentaose, cellohexaose and laminaribiose are not hydrolyzed by the mutant and instead exhibit competitive inhibition. The structures of the BGlu1 E176Q, its complexes with cellotetraose, cellopentaose and laminaribiose, and its covalent intermediate with 2-deoxy-2-fluoroglucoside were determined at 1.65, 1.95, 1.80, 2.80, and 1.90 Å resolution, respectively. The Q176 Nε was found to hydrogen bond to the glycosidic oxygen of the scissile bond, thereby explaining its high activity. The enzyme interacts with cellooligosaccharides through direct hydrogen bonds to the nonreducing terminal glucosyl residue. However, interaction with the other glucosyl residues is predominantly mediated through water molecules, with the exception of a direct hydrogen bond from N245 to glucosyl residue 3, consistent with the apparent high binding energy at this residue. Hydrophobic interactions with the aromatic sidechain of W358 appear to orient glucosyl residues 2 and 3, while Y341 orients glucosyl residues 4 and 5. In contrast, laminaribiose has its second glucosyl residue positioned to allow direct hydrogen bonding between its O2 and Q176 Oε and O1 and N245. These are the first GH1 glycoside hydrolase family structures to show oligosaccharide binding in the hydrolytic configuration.  相似文献   

4.
The abilities of a family of chemically synthesized oligo-beta-glucosides, ranging in size from hexamer to decamer, to induce phytoalexin accumulation in soybean cotyledons were investigated to determine which structural elements of the oligoglucosides are important for their biological activity. The results of the biological assays established that the following structural motif is necessary for the oligo-beta-glucosides to have high elicitor activity: [formula; see text] The branched trisaccharide at the nonreducing end of the oligoglucosides was found to be essential for maximum elicitor activity. Substitution of either the nonreducing terminal backbone glucosyl residue or the side-chain glucosyl residue closest to the nonreducing end with glucosaminyl or N-acetylglucosaminyl residues reduced the elicitor activity of the oligoglucosides between 10-fold and 10,000-fold. Elicitor activity was also reduced 1000-fold if the two side-chain glucosyl residues were attached to adjacent backbone glucosyl residues rather than to glucosyl residues separated by an unbranched residue. In contrast, modifications of the reducing terminal glucosyl residue of an elicitor-active hepta-beta-glucoside by conjugation with tyramine and subsequent iodination had no significant effect on the elicitor activity of the hepta-beta-glucoside. These results demonstrate that oligo-beta-glucosides must have a specific structure to trigger the signal transduction pathway, which ultimately leads to the de novo synthesis of phytoalexins in soybean.  相似文献   

5.
We have previously demonstrated by the immunoperoxidase method the presence of a chicken heterophile antigenic determinant (CHAD-1) in medullary lymphocytes of the bursa of Fabricius and thymus as well as in some nonlymphoid cells. It has been found that the anti-CHAD-1 antibody could be neutralized by absorption with several glycoproteins or glycopeptides containing highly branched, asparagine-linked oligosaccharides terminating in N-acetylglucosamine residues. In the present study, fetuin, desialo-fetuin, and a series of 27 highly purified oligosaccharides with well-defined structures were used to investigate the chemical composition and fine structure of the CHAD-1 epitope. It was shown that anti-CHAD-1 antibody binds to oligosaccharides with at least three terminal N-acetyl glucosamine residues at the nonreducing end. These residues may be linked beta 1-2, beta 1-4, or beta 1-6 to one, two, or three different mannose residues. The antibody combining site accommodates at least four carbohydrate residues. Oligosaccharides containing five or six terminal N-acetylglucosamine residues at the nonreducing end demonstrated the highest immunoreactivity with the anti-CHAD-1 antibody. Substitution of terminal N-acetylglucosamine residues with galactose, or with galactose and sialic acid, masks CHAD-1. On the basis of this work, epitopes that react with the anti-CHAD-1 antibody will be renamed terminal N-acetylglucosamine cluster antigens (TGCA). Anti-TGCA antibody has potential use in the monitoring of biosynthetic processing of asparagine-linked oligosaccharides and in studies of their cellular distribution and functions.  相似文献   

6.
The specificities and the sizes and shapes of the antibody combining sites of the 15 antisera raised against various stearyl-isomaltosyl oligosaccharides were studied by quantitative precipitin and precipitin inhibition. The antibodies precipitated well with dextrans B512 and B1424 but less well with B1299S and B1355S. Only 3 of the 15 antisera reacted with linear dextrans; however, with about 50% of the added antibodies being precipitated, showing that most of the antibodies cannot bind to internal determinants along the dextran molecules and are similar to myeloma protein W3129 in having cavity-type sites which bind only to terminal nonreducing ends of α1 → 6 dextran. Antibodies differing in the sizes of their antibody combining sites were elicited in different rabbits by the same antigen. Of the 15 antisera studied, four have antibody combining sites as large as IM3, five as large as IM4, three as large as IM5 and three as large as IM6. The association constants for various isomaltose oligosaccharides of an antiserum (R-862) showing fewest bands in isoelectric focusing gel were determined by affinity electrophoresis and were comparable to W3129.  相似文献   

7.
Injection of mice bearing the Ig-1a allotype with dextran B1355 results in an IgM antibody response that is generally regarded as thymus independent. Moreover, the antibody is directed to alpha[1,3] determinants on dextran B1355 and shares cross-reacting idiotypic determinants with a lambda 1 IgA (J558) myeloma protein as well as a lambda 1 IgM (MOPC 104E) myeloma protein. In this study, we show that BALB/c (Ig-1a) mice injected with dextran B1355 produced highly significant IgA anti-dextran responses with specificity directed to the alpha[1,3] epitope. Kinetics of the IgA anti-dextran response in BALB/c mice paralleled kinetics of the IgM response. However, the magnitude of the IgA response was markedly T cell dependent and age dependent.  相似文献   

8.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

9.
It is shown that cholesterol may interact with some substances containing the guanidine group (guanidine itself, arginine, metformin and dodecylguanidine bromide) and with arginine-rich proteins--apoproteins A-I and E. In the latter case the interaction produces the formation of cholesterol-apoprotein complexes. Analysis of such complexes has shown that one apo A-I molecule binds 17-22 and one apo E molecule binds 30-35 sterol molecules, which approximately corresponds to the amount of arginine residues in these proteins. Formation of cholesterol-apoprotein complexes has been suggested to occur due to: (1) formation of hydrogen bond and/or ion-dipole interaction between cholesterol hydroxyl and guanidine groups of the apoprotein arginine residues and (2) hydrophobic interaction of the cholesterol aliphatic chain with nonpolar side chains of the amino acids occupying the third position from arginine in the protein molecule.  相似文献   

10.
Serum IgA, IgG and colostrum secretory IgA prepared from specimens pooled from a large number of human beings were shown to have measurable levels of antibodies against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, poliovirus, Coxsackie B virus, echovirus and influenza virus. Serum IgA exerted a bacteriostatic effect in vitro on E. coli and P. aeruginosa, which increased in the presence of the iron-binding proteins lactoferrin and transferrin. This bacteriostasis was reduced when the iron-binding proteins were saturated with iron. Similar results were obtained with IgG and secretory IgA. The bacteriostatic effect of serum IgA was also shown in vivo, in the peritoneal cavity of mice. The effect was suppressed by iron. Iron-chelating substances, siderophores, excreted by E. coli diminished the cosoperative bacteriostatic effect of serum IgA and transferrin. Siderophore production by E. coli was inhibited in the presence of serum IgA, but not when serum IgA was deprived of specific antibody by absorption with E. coli. These results indicate that serum IgA has a potent bacteriostatic effect in cooperation with transferrin or lactoferrin because of the inhibitory effect of the specific antibody on siderophore production by E. coli.  相似文献   

11.
The specificity and properties of a novel IgA receptor expressed on the surface of a tissue culture-adapted B cell lymphoma, T560, that originated in murine gut-associated lymphoid tissue, have been explored. Like the IgA receptors of murine T and splenic B cells studied by others, the T560 IgA receptor is trypsin sensitive and neuraminidase resistant and is up-regulated on T560 cells by exposing them overnight to high concentrations of polymeric IgA. Unlike them, the T560 IgA receptor is inhibited by low concentrations of IgM and high concentrations of IgG2a and IgG2b, binds at pH 4.0 but not at pH 8.0, is down-regulated by activation of protein kinase C and is sensitive to phosphatidylinositol-specific phospholipase C, indicating that it is glycosyl phosphatidylinositol-linked to the cell membrane. It is not a cell-bound form of galactosyl transferase, does not appear to bind to Ig through carbohydrate residues and does not react specifically with antibody to secretory component. It may be a completely new, cross-reactive receptor, perhaps related in some way to the polymeric Ig receptor or to the receptor for IgA expressed on the apical surface of Peyer's patch M cells, which is known to cross-react with IgG. Alternatively, it may be homologous to the highly IgA-specific Fc alpha R of T cells but, perhaps because of its glycosyl phosphatidylinositol linker, may have an ability to move and interact with other Ig receptors on the cell surface such that Ig bound to them are cross-inhibitory.  相似文献   

12.
The structure of an antigenic, sulfated glycoprotein from chick chorioallantoic fluid has been investigated by exogalactosidase digestion, methylation and mass spectral analyses, periodate oxidation, and Smith degradation. The main carbohydrate chains are composed of D-galactosyl residues linked at C-3 and 2-acetamido-2-deoxyglucose residues linked at C-4. Fucose and N-acetylneuraminic acid residues are nonreducing terminal groups, and the N-acetylneuraminic acid groups are linked to the D-galactose residues at C-3. Most of the sulfate groups (91% of the sulfate) are located on C-6 of the 2-acetamido-2-deoxyglucose residues, and the rest on C-6 of the D-galactose residues. A large number of the D-galactose residues (36.9% of the total) are present as nonreducing terminal groups and another 21.7% of the D-galactose residues are in penultimate position to the nonreducing terminal N-acetylneuraminic acid residues. Although mild periodate oxidation indicates the presence of D-galactose in furanoside form (5.5% of total D-galactose), no 5-O-methyl derivative of D-galactose was observed on methylation.  相似文献   

13.
Tuma J  Richert C 《Biochemistry》2003,42(30):8957-8965
The three-dimensional structure of a covalent hybrid between cholic acid and the self-complementary DNA hexamer 5'-TGCGCA-3' was solved via two-dimensional NMR and restrained torsion angle molecular dynamics. In the complex, refined to a pairwise rmsd of 0.64 A, the steroid binds to the terminal T:A base pairs via extensive van der Waals contacts but without any hydrogen bonds or detectable dipole-dipole interactions. The contacts involve the methyl groups as well as one edge of the streoid's sterane skeleton and both nucleobases and the deoxyriboses of the terminal base pair of the DNA. The surprising shape complementarity between steroid and the undisturbed DNA termini explains the increase in fidelity and affinity observed for hybridization probes bearing bile acid residues. Since the hydroxyl groups of the steroid do not contribute to the binding of the DNA, they may be derivatized, potentially giving access to a new class of specific binders for blunt ends of Watson-Crick duplexes.  相似文献   

14.
I M Russu  S S Wu  K A Bupp  N T Ho  C Ho 《Biochemistry》1990,29(15):3785-3792
High-resolution 1H and 31P nuclear magnetic resonance spectroscopy has been used to investigate the binding of 2,3-diphosphoglycerate to human normal adult hemoglobin and the molecular interactions involved in the allosteric effect of the 2,3-diphosphoglycerate molecule on hemoglobin. Individual hydrogen ion NMR titration curves have been obtained for 22-26 histidyl residues of hemoglobin and for each phosphate group of 2,3-diphosphoglycerate with hemoglobin in both the deoxy and carbonmonoxy forms. The results indicate that 2,3-diphosphoglycerate binds to deoxyhemoglobin at the central cavity between the two beta chains and the binding involves the beta 2-histidyl residues. Moreover, the results suggest that the binding site of 2,3-diphosphoglycerate to carbonmonoxyhemoglobin contains the same (or at least some of the same) amino acid residues responsible for binding in the deoxy form. As a result of the specific interactions with 2,3-diphosphoglycerate, the beta 2-histidyl residues make a significant contribution to the alkaline Bohr effect under these experimental conditions (up to 0.5 proton/Hb tetramer). 2,3-Diphosphoglycerate also affects the individual hydrogen ion equilibria of several histidyl residues located away from the binding site on the surface of the hemoglobin molecule, and, possibly, in the heme pockets. These results give the first experimental demonstration that long-range electrostatic and/or conformational effects of the binding could play an important role in the allosteric effect of 2,3-diphosphoglycerate on hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Rice BGlu1 (Os3BGlu7) is a glycoside hydrolase family 1 β‐glucosidase that hydrolyzes cellooligosaccharides with increasing efficiency as the degree of polymerization (DP) increases from 2 to 6, indicating six subsites for glucosyl residue binding. Five subsites have been identified in X‐ray crystal structures of cellooligosaccharide complexes with its E176Q acid‐base and E386G nucleophile mutants. X‐ray crystal structures indicate that cellotetraose binds in a similar mode in BGlu1 E176Q and E386G, but in a different mode in the BGlu1 E386G/Y341A variant, in which glucosyl residue 4 (Glc4) interacts with Q187 instead of the eliminated phenolic group of Y341. Here, we found that the Q187A mutation has little effect on BGlu1 cellooligosaccharide hydrolysis activity or oligosaccharide binding in BGlu1 E176Q, and only slight effects on BGlu1 E386G glycosynthase activity. X‐ray crystal structures showed that cellotetraose binds in a different position in BGlu1 E176Q/Y341A, in which it interacts directly with R178 and W337, and the Q187A mutation had little effect on cellotetraose binding. Mutations of R178 and W337 to A had significant and nonadditive effects on oligosaccharide hydrolysis by BGlu1, pNPGlc cleavage and cellooligosaccharide inhibition of BGlu1 E176Q and BGlu1 E386G glycosynthase activity. Hydrolysis activity was partially rescued by Y341 for longer substrates, suggesting stacking of Glc4 on Y341 stabilizes binding of cellooligosaccharides in the optimal position for hydrolysis. This analysis indicates that complex interactions between active site cleft residues modulate substrate binding and hydrolysis.  相似文献   

16.
The binding site of chicken hepatic lectin   总被引:3,自引:0,他引:3  
The binding site of the chicken hepatic lectin involved in the clearance of N-acetylglucosamine-terminated serum glycoproteins was explored by a competitive binding assay using 3H-labeled agalacto-orosomucoid and various glycoproteins, polysaccharides, monosaccharides, and glycosides as inhibitors. The binding site is relatively small, involving a terminal nonreducing DGlcNAc structure with an equatorial N-acetamido group on carbon 2 and an equatorial hydroxyl group on carbon 4. Among the mono- and oligosaccharides tested, benzyl alpha DGlcNAc was the best inhibitor, being three times as effective as DGlcNAc; and in general, all alpha-anomeric glycosides were better than beta-glycosides. All oligosaccharides with terminal nonreducing beta DGlcNAc have almost the same inhibitory power, whereas those with nonreducing DGlc or DGal were relatively inactive. Among the serum and blood group glycoproteins, a Smith degraded human H substance with several exposed terminal nonreducing beta DGlcNAc residues was the most active and twice as effective as agalacto-orosomucoid and an A substance, Hog 75 10% precipitate. Almost all hog preparations, some with A or with H activity, were equally effective. A glycopeptide with terminal DGlcNAc was twice as active as one with terminal nonreducing DMan and DGlcNAc residues and almost three times as potent as one with terminal nonreducing DGal; a glycopeptide with terminal sialic acid was inactive. The slopes of the inhibition lines differed, reflecting the heterogeneity of the various determinant groups on the glycoproteins.  相似文献   

17.
Important hydrogen bonding interactions between substrate OH-groups in yeast alpha-glucosidases and oligo-1,6-glucosidase from glycoside hydrolase family 13 have been identified by measuring the rates of hydrolysis of methyl alpha-isomaltoside and its seven monodeoxygenated analogs. The transition-state stabilization energy, DeltaDeltaG, contributed by the individual OH-groups was calculated from the activities for the parent and the deoxy analogs, respectively, according to DeltaDeltaG = -RT ln[(Vmax/Km)analog/(Vmax/Km)parent]. This analysis of the energetics gave DeltaDeltaG values for all three enzymes ranging from 16.1 to 24.0 kJ.mol-1 for OH-2', -3', -4', and -6', i.e. the OH-groups of the nonreducing sugar ring. These OH-groups interact with enzyme via charged hydrogen bonds. In contrast, OH-2 and -3 of the reducing sugar contribute to transition-state stabilization, by 5.8 and 4.1 kJ.mol-1, respectively, suggesting that these groups participate in neutral hydrogen bonds. The OH-4 group is found to be unimportant in this respect and very little or no contribution is indicated for all OH-groups of the reducing-end ring of the two alpha-glucosidases, probably reflecting their exposure to bulk solvent. The stereochemical course of hydrolysis by these three members of the retaining family 13 was confirmed by directly monitoring isomaltose hydrolysis using 1H NMR spectroscopy. Kinetic analysis of the hydrolysis of methyl 6-S-ethyl-alpha-isomaltoside and its 6-R-diastereoisomer indicates that alpha-glucosidase has 200-fold higher specificity for the S-isomer. Substrate molecular recognition by these alpha-glucosidases are compared to earlier findings for the inverting, exo-acting glucoamylase from Aspergillus niger and a retaining alpha-glucosidase of glycoside hydrolase family 31, respectively.  相似文献   

18.
A monoclonal antibody, GE 4.90, has been produced following immunization of mice with the 95-kDa protein (triadin) of terminal cisternae of rabbit fast skeletal muscle isolated in nondenaturing detergent. The antibody binds to a protein of Mr95K in Western blots of microsomal vesicles electrophoresed in the presence of mercaptoethanol. The greatest intensity of the immunoblot reaction is to enriched terminal cisternae vesicles while little binding is seen to longitudinal reticulum and transverse tubules. The content of antigen in different microsomal subfractions has been estimated by immunoassay: terminal cisternae/triads contain 5.6 micrograms/mg of protein while heavy terminal cisternae contain 32 micrograms/mg. The molar content of triadin in vesicles is approximately the same as that of the ryanodine receptor. When Western blots of gels of terminal cisternae are run in nonreducing conditions, little protein of Mr95K is visible. A number of bands, however, forming a ladder of higher molecular weight are discerned, indicating that the 95-kDa protein forms a disulfide-linked homopolymer. A biotinylated aromatic disulfide reagent (biotin-HPDP) labels the 95-kDa protein, the junctional foot protein, and the Mr 106K protein described by others as a Ca(2+)-release channel (SG 106). This latter protein migrates in gel electrophoresis under nonreducing conditions at a molecular weight different from that of the 95-kDa protein. We did not detect any alteration of binding of the 95-kDa protein to the dihydropyridine receptor or junctional foot protein dependent on the state of oxidation of cysteine residues of either triadin or receptor protein used as the overlay probe.  相似文献   

19.
Structural studies on the carbohydrates of Groups A, C, and A-variant (AV) streptococci have utilized periodate oxidation, permethylation analysis, and immunochemical comparison of intact and periodate-oxidized polysaccharides. The data indicate that a similar 1,2- and 1,3-linked rhamnose chain is present in both the A and AV carbohydrates. The group A carbohydrate contains in addition N-acetylglucosamine residues at nonreducing terminals, whereas the AV is a homopolymer of rhamnose. There is some evidence that Group Ccarbohydrate contains the same rhamnose chain, but structural comparisons to the A and AV carbohydrates are complicated by the presence of intrachain N-acetylgalactosamine residues. Periodate oxidation and permethylation analysis show that while approximately 50% of the N-acetylgalactosamine of the Group C carbohydrate occupies terminal positions, the remainder is present as 1,3-linked units. Removal of the nonreducing terminal hexosamine units from the Group A carbohydrate by periodate treatment significantly enhanced its cross-reactivity with AV antiserum, whereas no enhancement was observed after similar treatment of the Group C carbohydrate. The data indicate the presence of an alpha-1,3-linked N-acetylgalactosamine disaccharide at the nonreducing terminal of the Group C carbohydrate.  相似文献   

20.
A polysaccharide composed of 3-O-methyl-D-mannose and D-mannose in a molar ratio of approximately 10:1 and containing 3 to 4 esterified acetyl residues has been isolated from Streptomyces griseus. This acetylated methylmannose polysaccharide (AMMP) is similar to the methylmannose polysaccharide (MMP) of Mycobacterium smegmatis (Gray, G. R., and Ballou, C. E. (1971) J. Biol. Chem. 246, 6835-6842) in its size and composition, the absence of acidic or basic groups, and the lack of a reducing end. It is different, however, in its content of esterified acetyl residues, and it is slightly different in its structure and in its gel filtration properties. The structure of AMMP has been established by proton magnetic resonance spectroscopy, and by combinations of methylation analysis and Smith degradation utilizing non-radioactively labeled polysaccharide and [3H]methyl-labeled polysaccharide obtained from cells grown in the presence of L-[methyl-3H]methionine. It is concluded that AMMP is a linear, nonreducing, neutral polysaccharide composed of a terminal D-mannose residue linked alpha(1 leads to 4) to a chain of 10 consecutive alpha(1 leads to 4)-linked 3-O-methyl-D-mannose residues. The reducing terminal 3-O-methyl-D-mannose residue exists, at least in part, as its alpha-methyl glycoside. The positions of attachment of the ester residues have not been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号