首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The angiotensin II AT2 receptor is an AT1 receptor antagonist   总被引:9,自引:0,他引:9  
The vasopressor angiotensin II activates AT(1) and AT(2) receptors. Most of the known in vivo effects of angiotensin II are mediated by AT(1) receptors while the biological functions of AT(2) receptors are less clear. We report here that the AT(2) receptor binds directly to the AT(1) receptor and thereby antagonizes the function of the AT(1) receptor. The AT(1)-specific antagonism of the AT(2) receptor was independent of AT(2) receptor activation and signaling, and it was effective on different cells and on human myometrial biopsies with AT(1)/AT(2) receptor expression. Thus, the AT(2) receptor is the first identified example of a G-protein-coupled receptor which acts as a receptor-specific antagonist.  相似文献   

3.
We investigated mechanisms by which epidermal growth factor (EGF) reduces angiotensin II (AngII) surface receptor density and stimulated actions in vascular smooth muscle cells (VSMC). EGF downregulated specific AngII radioligand binding in intact cultured rat aortic smooth muscle cells but not in cell membranes and also inhibited AngII-stimulated contractions of aortic segments. Inhibitors of cAMP-dependent kinases, PI-3 kinase, MAP kinase, cyclooxygenase, and calmodulin did not prevent EGF-mediated downregulation of AngII receptor binding, whereas the EGF receptor kinase inhibitor AG1478 did. Total cell AngII AT1a receptor protein content of EGF-treated and untreated cells, measured by immunoblotting, did not differ. Actinomycin D or cytochalasin D, which interacts with the cytoskeleton, but not the protein synthesis inhibitor cycloheximide, prevented EGF from downregulating AngII receptor binding. Consistently, EGF inhibited AngII-stimulated formation of inositol phosphates in the presence of cycloheximide but not in the presence of actinomycin D or cytochalasin D. In conclusion, EGF needs an intact signal transduction pathway to downregulate AngII surface receptor binding, possibly by altering cellular location of the receptors.  相似文献   

4.
Although tyrosine kinases are critically involved in the angiotensin II (Ang II) type 1 (AT1) receptor signaling, how AT1 receptors activate tyrosine kinases is not fully understood. We examined the structural requirements of the AT1 receptor for transactivation of the epidermal growth factor (EGF) receptor (EGFR). Studies using carboxyl terminal-truncated AT1 receptors indicated that the amino acid sequence between 312 and 337 is required for activation of EGFR. The role of the conserved YIPP motif in this sequence in transactivation of EGFR was investigated by mutating tyrosine 319. Ang II failed to activate EGFR in cells expressing AT1-Y319F, whereas EGFR was activated even without Ang II in cells expressing AT1-Y319E, which mimics the AT1 receptor phosphorylated at Tyr-319. Immunoblot analyses using anti-phospho Tyr-319-specific antibody showed that Ang II increased phosphorylation of Tyr-319. EGFR interacted with the AT1 receptor but not with AT1-Y319F in response to Ang II stimulation, whereas the EGFR-AT1 receptor interaction was inhibited in the presence of dominant negative SHP-2. The requirement of Tyr-319 seems specific for EGFR because Ang II-induced activation of other tyrosine kinases, including Src and JAK2, was preserved in cells expressing AT1-Y319F. Extracellular signal-regulated kinase activation was also maintained in AT1-Y319F through activation of Src. Overexpression of wild type AT1 receptor in cardiac fibroblasts enhanced Ang II-induced proliferation. By contrast, overexpression of AT1-Y319F failed to enhance cell proliferation. In summary, Tyr-319 of the AT1 receptor is phosphorylated in response to Ang II and plays a key role in mediating Ang II-induced transactivation of EGFR and cell proliferation, possibly through its interaction with SHP-2 and EGFR.  相似文献   

5.
The epidermal growth factor receptor (EGFR) gives name to a family of receptors formed by four members in mammals (EGFR, ErbB2, ErbB3, and ErbB4). Members of this family can be activated to become potent oncogenes, and many human and animal tumors express qualitatively or quantitatively altered receptors from this group. We have isolated and characterized a second egfr gene in the melanoma model fish Xiphophorus. Both Xiphophorus egfra and egfrb duplicates are co-orthologs of the mammalian egfr gene. Database analysis showed that not only egfr but also erbB3 and erbB4 are present as duplicates in some fish species. They originated from ancient duplication events that might be consistent with the hypothesis of a fish-specific genome duplication. In Xiphophorus, the egfrb gene underwent a second duplication that generated the melanoma-inducing oncogene Xmrk. The study and comparison of some of the functional characteristics of both Xiphophorus EGF receptors, including expression profile, ligand-binding abilities, and intracellular signal transduction revealed that Xiphophorus Egfra not only shares common features with Egfrb and the human EGFR but also shows significant differences in its functional characteristics. The mechanism of maintenance of these duplicates remains to be clarified.  相似文献   

6.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

7.
《MABS-AUSTIN》2013,5(4):1013-1025
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

8.
The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with acting in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.  相似文献   

9.
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

10.
11.
We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimerization promotes partial trans autophosphorylation of ErbB1, leading to a rapid rise in intracellular [Ca(2+)] that can activate calmodulin. We postulate the Ca(2+)/calmodulin complex binds rapidly to residues 645--660 of the juxtamembrane domain, reversing its net charge from +8 to -8 and repelling it from the negatively charged inner leaflet of the membrane. The repulsion has two consequences: it releases electrostatically sequestered phosphatidylinositol 4,5-bisphosphate (PIP(2)), and it disengages the kinase domain from the membrane, allowing it to become fully active and phosphorylate an adjacent ErbB molecule or other substrate. We tested various aspects of the model by measuring ErbB juxtamembrane peptide binding to phospholipid vesicles using both a centrifugation assay and fluorescence correlation spectroscopy; analyzing the kinetics of interactions between ErbB peptides, membranes, and Ca(2+)/calmodulin using fluorescence stop flow; assessing ErbB1 activation in Cos1 cells; measuring fluorescence resonance energy transfer between ErbB peptides and PIP(2); and making theoretical electrostatic calculations on atomic models of membranes and ErbB juxtamembrane and kinase domains.  相似文献   

12.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

13.
The mechanisms that mediate implantation of the human embryo remain poorly understood and represent a fundamental problem in reproductive biology. Candidate molecules that mediate and facilitate implantation have been identified in animal studies, and include heparin binding epidermal growth factor. Here we demonstrate a potential function for the transmembrane form of heparin-binding epidermal growth factor in mediating blastocyst attachment to the endometrium, in two different novel in vitro models for human implantation. Furthermore, we demonstrate specific localisation of the heparin-binding epidermal growth factor receptor ErbB4, on the surface of the trophectoderm in peri-implantation human blastocysts. Our data lead the way for further dissection of the molecular mechanisms of implantation of the human embryo, and have implications for infertility, in vitro fertilization and contraception.  相似文献   

14.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

15.
Antibodies are the most rapidly expanding class of human therapeutics, including their use in cancer therapy. Monoclonal antibodies (mAb) against epidermal growth factor (EGF) receptor (EGFR) generated for cancer therapy block the binding of ligand to various EGFR-expressing human cancer cell lines and abolish ligand-dependent cell proliferation. In this study, we show that our mAb against EGFRs, designated as B4G7, exhibited a growth-stimulatory effect on various human cancer cell lines including PC-14, a non-small cell lung cancer cell line; although EGF exerted no growth-stimulatory activity toward these cell lines. Tyrosine phosphorylation of EGFRs occurred after treatment of PC-14 cells with B4G7 mAb, and it was completely inhibited by AG1478, a specific inhibitor of EGFR tyrosine kinase. However, this inhibitor did not affect the B4G7-stimulated cell growth, indicating that the growth stimulation by B4G7 mAb seems to be independent of the activation of EGFR tyrosine kinase. Immunoprecipitation with anti-ErbB3 antibody revealed that B4G7, but not EGF, stimulated heterodimerization between ErbB2 and ErbB3. ErbB3 was tyrosine phosphorylated in the presence of B4G7 but not in the presence of EGF. Further, the phosphorylation and B4G7-induced increase in cell growth were inhibited by AG825, a specific inhibitor of ErbB2. These results show that the ErbB2/ErbB3 dimer functions to promote cell growth in B4G7-treated cells. Changes in receptor-receptor interactions between ErbB family members after inhibition of one of its members are of potential importance in optimizing current EGFR family-directed therapies for cancer.  相似文献   

16.
17.
Angiotensin II (Ang II) receptor subtypes AT1 and AT2 share 34% overall homology, but the least homology is in their third intracellular loop (3rd ICL). In an attempt to elucidate the role of the 3rd ICL in determining the similarities and differences in the functions of the AT1 and the AT2 receptors, we generated a chimeric receptor in which the 3rd ICL of the AT2 receptor was replaced with that of the AT1 receptor. Ligand-binding properties and signaling properties of this receptor were assayed by expressing this receptor in Xenopus oocytes. Ligand-binding studies using [125I-Sar1-Ile8] Ang II, a peptidic ligand that binds both the AT1 and the AT2 receptor subtypes, and 125I-CGP42112A, a peptidic ligand that is specific for the AT2 receptor, showed that the chimeric receptor has lost affinity to both ligands. However, IP3 levels of the oocytes expressing the chimeric receptor were comparable to the IP3 levels of the oocytes expressing the AT1 receptor, suggesting that the chimeric receptors could couple to phospholipase C pathway in response to Ang II. We have shown previously that the nature of the amino acid present in the position 215 located in the fifth transmembrane domain (TMD) of the AT2 receptor plays an important role in determining its affinity to different ligands. Our results from the ligand-binding studies of the chimeric receptor further support the idea that the structural organization of the region spanning the 5th TMD and the 3rd ICL of the AT2 receptor has an important role in determining the ligand-binding properties of this receptor.  相似文献   

18.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

19.
20.
We isolated a cDNA clone encoding the gerbil AT2 receptor (gAT2) gene from a gerbil adrenal gland cDNA library. The full-length cDNA contains a 1,089-bp open reading frame encoding 363 amino acid residues with 90.9, 96.1, and 95.6% identity with the human (hAT2), rat (rAT2), and mouse AT2 (mAT2) receptors, respectively. There are at least seven nonconserved amino acids in the NH2-terminal domain and in positions Val196, Val217, and Met293, important for angiotensin (ANG) II but not for CGP-42112 binding. Displacement studies in adrenal sections revealed that affinity of the gAT2 receptor was 10-20 times lower for ANG II, ANG III, and PD-123319 than was affinity of the rAT2 receptor. The affinity of each receptor remained the same for CGP-42112. When transfected into COS-7 cells, the gAT2 receptor shows affinity for ANG II that is three times lower than that shown by the hAT2 receptor, whereas affinities for ANG III and the AT2 receptor ligands CGP-42112 and PD-123319 were similar. Autoradiography in sections of the gerbil head showed higher binding in muscles, retina, skin, and molars at embryonic day 19 than at 1 wk of age. In situ hybridization and emulsion autoradiography revealed that at embryonic day 19 the gAT2 receptor mRNA was highly localized to the base of the dental papilla of maxillary and mandibular molars. Our results suggest selective growth-related functions in late gestation and early postnatal periods for the gAT2 receptor and provide an essential basis for future mutagenesis studies to further define structural requirements for agonist binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号