首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary cobalamin (vitamin B12; Cbl) deficiency caused significant increases in plasma serine, threonine, glycine, alanine, tyrosine, lysine and histidine levels in rats. In particular, the serine and threonine levels were over five and eight times, respectively, higher in the Cbl-deficient rats than those in the sufficient controls. In addition, some amino acids, including serine and threonine, were excreted into urine at significantly higher levels in the deficient rats. When Cbl was supplemented into the deficient rats for 2 weeks, in coincidence with the disappearance of the urinary excretion of methylmalonic acid (an index of Cbl deficiency), the plasma serine and threonine levels were normalized. These results indicate that Cbl deficiency results in metabolic disorder of certain amino acids, including serine and threonine. The expression level of hepatic serine dehydratase (SDH), which catalyzes the conversion of serine and threonine to pyruvate and 2-oxobutyrate, respectively, was significantly lowered by Cbl deficiency, even though Cbl does not participate directly in the enzyme reaction. The SDH activity in the deficient rats was less than 20% of that in the sufficient controls, and was normalized 2 weeks after the Cbl supplementation. It is thus suggested that the decrease of the SDH expression relates closely with the abnormalities in the plasma and urinary levels of serine and threonine in the Cbl-deficient rats.  相似文献   

2.
Arachidonic acid (AA) regulates intracellular calcium concentration ([Ca2+]i) in a variety of cell types including salivary cells. In the present study, the effects of serine/threonine phosphatases on AA-induced Ca(2+) signaling in mouse parotid acini were determined. Mice were euthanized with CO2. Treatment of acini with the serine/threonine phosphatase inhibitor calyculin A blocked both thapsigargin- and carbachol-induced Ca2+ entry but resulted in an enhancement of AA-induced Ca2+ release and entry. Effects were mimicked by the protein phosphatase-1 (PP1) inhibitor tautomycin but were inhibited by the PP2A inhibitor okadaic acid. The protein kinase A (PKA) inhibitor PKI(14-22) significantly attenuated AA-induced enhancement of Ca2+ release and entry in the presence of calyculin A, whereas it had no effect on calyculin A-induced inhibition of thapsigargin-induced Ca2+ responses. The ryanodine receptor (RyR) inhibitor, tetracaine, and StHt-31, a peptide known to competitively inhibit type II PKA regulatory subunit binding to PKA-anchoring protein (AKAP), abolished calyculin A enhancement of AA-induced Ca2+ release and entry. StHt-31 also abolished forskolin potentiation of 4-chloro-3-ethylphenol (4-CEP) and AA on Ca2+ release but had no effect on 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cAMP potentiation of 4-CEP responses. Results suggest that inhibition of PP1 results in an enhancement of AA-induced [Ca2+]i via PKA, AKAP, and RyRs.  相似文献   

3.
Dietary cobalamin (vitamin B12; Cbl) deficiency caused significant increases in plasma serine, threonine, glycine, alanine, tyrosine, lysine and histidine levels in rats. In particular, the serine and threonine levels were over five and eight times, respectively, higher in the Cbl-deficient rats than those in the sufficient controls. In addition, some amino acids, including serine and threonine, were excreted into urine at significantly higher levels in the deficient rats. When Cbl was supplemented into the deficient rats for 2 weeks, in coincidence with the disappearance of the urinary excretion of methylmalonic acid (an index of Cbl deficiency), the plasma serine and threonine levels were normalized. These results indicate that Cbl deficiency results in metabolic disorder of certain amino acids, including serine and threonine. The expression level of hepatic serine dehydratase (SDH), which catalyzes the conversion of serine and threonine to pyruvate and 2-oxobutyrate, respectively, was significantly lowered by Cbl deficiency, even though Cbl does not participate directly in the enzyme reaction. The SDH activity in the deficient rats was less than 20% of that in the sufficient controls, and was normalized 2 weeks after the Cbl supplementation. It is thus suggested that the decrease of the SDH expression relates closely with the abnormalities in the plasma and urinary levels of serine and threonine in the Cbl-deficient rats.  相似文献   

4.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   

5.
Phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P(3)) plays important signaling roles in immune cells, particularly in the control of activating pathways and of survival. It is formed by a family of phosphatidylinositol 3'-kinases (PI3Ks) which phosphorylate PtdIns(4,5)P(2) in vivo. In human neutrophils, the levels of PtdIns(3,4,5)P(3) increase rapidly at the leading edge of locomoting cells and at the base of the phagocytic cup during FcgammaR-mediated particle ingestion. Even though these, and other, data indicate that PtdIns(3,4,5)P(3) is involved in the control of chemotaxis and phagocytosis in human neutrophils, the mechanisms that regulate its levels have yet to be fully elucidated in these cells. We evaluated the potential implication of SHIP1 and PTEN, two lipid phosphatases that utilize PtdIns(3,4,5)P(3) as substrate, in the signaling pathways called upon in response to CD32a cross-linking. We observed that the cross-linking of CD32a resulted in a transient accumulation of PtdIns(3,4,5)P(3). CD32a cross-linking also induced the tyrosine phosphorylation of SHIP1, its translocation to the plasma membrane and its co-immunoprecipitation with CD32a. CD32a cross-linking had no effect on the level of serine/threonine phosphorylation of PTEN and did not stimulate its translocation to the plasma membrane. PP2, a Src kinase inhibitor, inhibited the tyrosine phosphorylation of SHIP1 as well as its translocation to the plasma membrane. Wortmannin, a PI3K inhibitor, had no effect on either of these two indices of activation of SHIP1. Our results indicate that SHIP1 is involved, in a Src kinase-dependent manner, in the early signaling events observed upon the cross-linking of CD32a in human neutrophils.  相似文献   

6.
Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti-MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post-translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl.  相似文献   

7.
Neutrophil motility is crucial to effective host defenses against microorganisms. While uropod retraction is a critical step in the migration of neutrophils, the underlying molecular mechanism is not well understood. Here, we show that inhibition of the Rho small GTPase with C3 exoenzyme prevented the retraction of trailing uropods, indicating that the process of rear release is mediated by a Rho signaling pathway. C3 exoenzyme caused marked elongation of directionally migrating neutrophils, suggesting an additional role for Rho in the maintenance of functional polarized cell shape. We also show that phosphorylation and dephosphorylation of the plasma membrane-actin filament cross-linker moesin are spatiotemporally controlled in migrating neutrophils. In particular, phosphorylation of moesin at threonine 558 depended on Rho activity. Videomicroscopy showed that dephosphorylation of this carboxy-terminal threonine preceded uropod retraction. Calyculin A, an inhibitor of type 1 and type 2A serine/threonine phosphatases, suppressed the moesin dephosphorylation and impaired uropod retraction in a dose-dependent manner. Cypermethrin, an inhibitor of type 2B serine/threonine phosphatase, had no such effects. The finding that Rho small GTPase and type 1/type 2A phosphatases are involved in rear release yields novel insights into the biochemical mechanisms of neutrophil migration.  相似文献   

8.
It was previously observed that cell confluence induced up-regulation of neutral sphingomyelinase 2 (nSMase2) and increased ceramide levels [Marchesini N., Osta W., Bielawski J., Luberto C., Obeid L.M. and Hannun Y.A. (2004) J. Biol. Chem., 279, 25101-11]. In this study, we show that, in MCF7 cells, confluence induces the dephosphorylation of phosphorylated-beta-catenin at threonine41/serine45. The effect of confluence on beta-catenin dephosphorylation was prevented by down regulation of nSMase2 using siRNA; reciprocally, exogenous addition of short or very long chain ceramides induced dephosphorylation of beta-catenin. The serine/threonine protein phosphatase inhibitors calyculin A and okadaic acid prevented beta-catenin dephosphorylation during confluence. The specific phosphatase involved was determined by studies using siRNA against the major serine/threonine phosphatases, and the results showed that a specific siRNA against PP1cgamma prevented dephosphorylation of beta-catenin. Moreover, exogenous ceramides and confluence were found to induce the translocation of PP1cgamma to the plasma membrane. All together these results establish: A) a specific intracellular pathway involving the activation of PP1 to mediate the effects of confluence-induced beta-catenin dephosphorylation and B) PP1 as a lipid-regulated protein phosphatase downstream of nSMase2/ceramide. Finally, evidence is provided for a role for this pathway in regulating cell motility during confluence.  相似文献   

9.
To investigate the catalytic properties of the Brassica oleracea S-locus receptor kinase (SRK), we have expressed the domain that is homologous to protein kinases as a fusion protein in Escherichia coli. Following in vivo labeling of cultures with 32P-labeled inorganic phosphate, we observed phosphorylation of the fusion protein on serine and threonine, but not on tyrosine. In contrast, labeling was not observed when lysine-524, a residue conserved among all protein kinases, was mutated to arginine, thus confirming that SRK phosphorylation was the result of intrinsic serine/threonine kinase activity.  相似文献   

10.
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins.  相似文献   

11.
We have examined the interaction between the serine/threonine kinase proto-oncogene product Raf-1 and the tyrosine kinase PDGF beta-receptor. Raf-1 tyrosine phosphorylation and kinase activity were increased by PDGF treatment of 3T3 cells or CHO cells expressing wild-type PDGF receptors but not mutant receptors defective in transmitting mitogenic signals, suggesting that the increase in Raf-1 kinase activity is a significant event in PDGF-induced mitogenesis. Concurrent with these increases, Raf-1 associated with the ligand-activated PDGF receptor. Furthermore, both mammalian Raf-1 and Raf-1 expressed using a recombinant baculoviral vector, associated in vitro with baculoviral-expressed PDGF receptor. This association was markedly decreased by prior phosphatase treatment of the receptor. Following incubation of partially purified baculoviral-expressed PDGF receptor with partially purified Raf-1, Raf-1 became phosphorylated on tyrosine and its serine/threonine kinase activity increased 4- to 6-fold. This is the first demonstration of the direct modulation of a protein activity by a growth factor receptor tyrosine kinase.  相似文献   

12.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

13.
14.
It was previously observed that cell confluence induced up-regulation of neutral sphingomyelinase 2 (nSMase2) and increased ceramide levels [Marchesini N., Osta W., Bielawski J., Luberto C., Obeid L.M. and Hannun Y.A. (2004) J. Biol. Chem., 279, 25101–11]. In this study, we show that, in MCF7 cells, confluence induces the dephosphorylation of phosphorylated-β-catenin at threonine41/serine45. The effect of confluence on β-catenin dephosphorylation was prevented by down regulation of nSMase2 using siRNA; reciprocally, exogenous addition of short or very long chain ceramides induced dephosphorylation of β-catenin. The serine/threonine protein phosphatase inhibitors calyculin A and okadaic acid prevented β-catenin dephosphorylation during confluence. The specific phosphatase involved was determined by studies using siRNA against the major serine/threonine phosphatases, and the results showed that a specific siRNA against PP1cγ prevented dephosphorylation of β-catenin. Moreover, exogenous ceramides and confluence were found to induce the translocation of PP1cγ to the plasma membrane. All together these results establish: A) a specific intracellular pathway involving the activation of PP1 to mediate the effects of confluence-induced β-catenin dephosphorylation and B) PP1 as a lipid-regulated protein phosphatase downstream of nSMase2/ceramide. Finally, evidence is provided for a role for this pathway in regulating cell motility during confluence.  相似文献   

15.
The involvement of serine and threonine phosphorylation in human sperm capacitation was investigated. Anti-phosphoserine monoclonal antibody (mAb) recognized six protein bands in the 43-55-kDa, 94 +/- 2-kDa, 110-kDa, and 190-kDa molecular regions, in addition to a faint band each in the 18-kDa and 35-kDa regions. Anti-phosphothreonine mAb recognized protein bands in six similar regions, except that the 18-kDa, 35-kDa, and 94 +/- 2-kDa protein bands were sharper and thicker, and an additional band was observed in the 110-kDa molecular region. In the 43-55-kDa molecular region, there was a well-characterized glycoprotein, designated fertilization antigen, that showed a further increase in serine/threonine phosphorylation after exposure to solubilized human zona pellucida. In a cell-free in vitro kinase assay carried out on beads or in solution, four to eight proteins belonging to similar molecular regions, namely 20 +/- 2 kDa, 43-55 kDa, 94 +/- 2 kDa, and 110 +/- 10 kDa, as well as in 80 +/- 4 and 210 +/- 10 kDa regions, were phosphorylated at dual residues (serine/tyrosine and threonine/tyrosine). Capacitation increased the intensity of serine/threonine phosphorylation per sperm cell, increased the number of sperm cells that were phosphorylated, and induced a subcellular shift in the serine/threonine-specific fluorescence. These findings indicate that protein serine/threonine phosphorylation is involved and may have a physiological role in sperm capacitation.  相似文献   

16.
Protein phosphatase (PP) activity is associated with the regulation of apoptosis in neutrophils. However, the underlying regulatory mechanism(s) in apoptosis remain unclear. The type of cell death induced by okadaic acid (OA), the inhibitor of PP1 and PP2A, is characterized by apoptotic morphological changes of the cells and annexin V-positive staining without DNA fragmentation. The apoptotic effects of OA and calyculin A on neutrophils were observed at concentrations ranging from 50 to 200 nM, or 10 to 50 nM, respectively. Cyclosporine A (a PP2B specific inhibitor), however, did not exhibit any pro-apoptotic effects. OA and calyculin A, but not cyclosporine A, exhibited significant effects on protein levels and on the electrophoretic mobility of Mcl-1. zVAD-fmk, a pancaspase inhibitor, failed to inhibit the effect of OA on the caspase-3 activity, procaspase-3 processing, and the apoptotic rate of neutrophils. However, 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), a general serine protease inhibitor, significantly abrogated the OA-induced mobility shift in procaspase-3, caspase-3 activation, and the apoptotic morphological changes in neutrophils. Moreover, OA enhanced the serine protease activity of the neutrophils. The addition of the proteinase-3 protein increased the rate of neutrophil apoptosis, which was also blocked by AEBSF but not by zVAD-fmk. These results suggest that OA induces procaspase-3 processing but that OA-induced apoptosis is caspase-independent and serine protease-dependent.  相似文献   

17.
A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases.  相似文献   

18.
Interleukin-6 (IL-6) increases metalloproteinase-13 (MMP-13) gene expression by increasing phosphorylated c-Jun and by inhibiting serine/threonine phosphatase-2A (PP2A) activity. We investigated the mechanisms by which IL-6 induces c-Jun phosphorylation and PP2A inactivation in Rat-1 fibroblasts. We show that IL-6 increased MMP-13 mRNA, phosphorylated c-Jun, and activator protein 1 (AP1) binding activity without increasing c-Jun-N-terminal kinase (JNK) activity. These effects did not seem to be mediated by ERK, p38 MAP kinase, phosphatidylinositol-3-kinase, calmoduline-dependent protein kinase, protein kinase C (PKC) or protein kinase A since inhibition with specific inhibitors did not abrogate these effects. IL-6 increases PP2A catalytic subunit tyrosine phosphorylation. Inhibition of the tyrosine kinase Jak2, with the specific inhibitor AG490, abrogated this effect. Likewise, this Jak2 inhibitor blocked the effects of IL-6 on c-Jun phosphorylation, AP1 binding activity and metalloproteinase-13 gene expression. We conclude that IL-6 increases MMP-13 gene expression by activation of Jak2, resulting in tyrosine phosphorylation of the catalytic subunit of PP2A, which in turn decreases PP2A activity and prolongs c-Jun phosphorylation.  相似文献   

19.
Protein serine/threonine phosphatases were implicated in the regulation of circadian rhythmicity in the marine dinoflagellate Gonyaulax polyedra based on the effects of three inhibitors specific for protein phosphatases 1 and 2A (okadaic acid, calyculin A, and cantharidin). Chronic exposure to okadaic acid resulted in a significant period lengthening, as measured by the bioluminescent glow rhythm, whereas cantharidin and calyculin A caused large phase delays but no persistent effect on period. Short pulses of the phosphatase inhibitors resulted in phase delays that were greatest near subjective dawn. Unlike 6-dimethylaminopurine, a protein kinase inhibitor, okadaic acid, calyculin A, and cantharidin did not block light-induced phase shifts. The inhibitors tested also increased radiolabeled phosphate incorporation into Gonyaulax proteins in vivo and blocked protein phosphatase 1 and 2A activities in Gonyaulax extracts. This study indicates that protein dephosphorylation catalyzed by protein serine/threonine phosphatases is necessary for proper functioning of the circadian system.  相似文献   

20.
In Streptomyces fradiae, calcium ions induce alterations in intensity and specificity of the secondary metabolism and stimulate sporulation. Using in vivo labeling, we demonstrate that in S. fradiae phosphorylation of some proteins are also influenced by Ca2+ added exogenously. Calcium ions at physiological concentration increase phosphorylation of multiple proteins on serine/threonine residues and suppress modification of a 140-kDa protein on tyrosine residues. Assay of protein kinases in situ demonstrated that Ca2+-induced differences in the pattern of protein phosphorylation in vivo are accompanied by Ca2+-dependent cessation of autophosphorylation of 140-kDa tyrosine kinase and by increased autophosphorylation of three serine/threonine kinases with molecular masses of 127, 65, and 31.5 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号