首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of six physiologically important long chain fatty acids to defatted human plasma albumin was measured at 37 degrees in a calcium-free Krebs-Ringer phosphate buffer, pH 7.4. The data were analyzed in terms of multiple stepwise equilibria. With the saturated acids, the magnitude of the equilibrium (association) constants, Ki, increased as the chain length increased: laurate smaller than myristate smaller than palmitate smaller than stearate. Oleate was bound more tightly than stearate; by contrast, linoleate was bound less tightly than stearate. The equilibrium constants, K1 through K12, ranged from 2.4 times 10-6 - 3.5 times 10-3 m-1 for laurate to 2.6 times 10-8 - 3.5 times 10-5 m-1 for oleate. Successive values of Ki decrease for each of the acids, indicating that major cooperative binding effects do not occur over the physiological range of fatty acid concentrations. In no case could the Ki be segregated into distinct classes, suggesting that any grouping of albumin binding sites is somewhat arbitrary. The results were inconclusive concerning whether premicellar association of unbound fatty acid occurs. Although corrections for premicellar association produced very little change in the Ki values for myristate, they raised the Ki for palmitate and stearate by 300 to 700 per cent. A sigmoidal relationship was obtained when the logarithm of Ki was plotted against chain length for the saturated fatty acids containing 6 to 18 carbon atoms, indicating that the binding energy is not simply a statistical process dependent only on the fatty acid chain length. This selectivity that albumin contributes to the binding process may be due to varying degrees of configurational adaptability of its binding sites as the fatty acid increases in length.  相似文献   

2.
Human serum albumin is the most abundant protein in the circulatory system, and one of its principal functions is to transport fatty acids. Binding of octanoate, decanoate, laurate and myristate was studied by a rate-of-dialysis technique. The primary association constants increased, but not linearly, with chain length. The number of high-affinity sites also increased with chain length; octanoate and decanoate bind to one such site, whereas laurate and myristate most probably bind to two sites. Albumin is composed of three homologous helical domains (I-III), which can be subdivided into two subdomains (A and B). For getting information about the positions of the high-affinity sites we produced 13 recombinant isoforms mutated in four different subdomains. Results obtained with these albumins are in accordance with the following model: octanoate and decanoate bind to a single site in subdomain IIIA, laurate binds to sites in subdomains IIIA and IIIB, whereas myristate binds in subdomains IB and IIIB. The results also showed that primary fatty acid binding is sensitive to amino acid substitutions in other parts of the protein. This is in contrast to the effect of amino acid substitutions of genetic albumin variants (alloalbumins). Usually these substitutions, which are situated at the surface of the protein, have no effect on fatty acid binding. Binding of fatty acid anions to different high-affinity sites and the sensitivity of these sites to amino acid substitutions elsewhere in the protein (and perhaps also to other types of modifications) are important factors that could effect simultaneous binding of other ligands, e.g. in patients treated with albumin-binding drugs.  相似文献   

3.
The primary ligands of human serum albumin (HSA), an abundant plasma protein, are non-esterified fatty acids. In vivo, the majority of fatty acids associated with the protein are unsaturated. We present here the first high-resolution crystal structures of HSA complexed with two important unsaturated fatty acids, the monounsaturated oleic acid (C18:1) and the polyunsaturated arachidonic acid (C20:4). Both compounds are observed to occupy the seven binding sites distributed across the protein that are also bound by medium and long-chain saturated fatty acids. Although C18:1 fatty acid binds each site on HSA in a conformation almost identical with that of the corresponding saturated compound (C18:0), the presence of multiple cis double bonds in C20:4 induces distinct binding configurations at some sites. The observed restriction on binding configurations plausibly accounts for differences in the pattern of binding affinities for the primary sites between polyunsaturated fatty acids and their saturated or monounsaturated counterparts.  相似文献   

4.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

5.
Human serum albumin (HSA) is an abundant plasma protein that is responsible for the transport of fatty acids. HSA also binds and perturbs the pharmacokinetics of a wide range of drug compounds. Binding studies have revealed significant interactions between fatty acid and drug-binding sites on albumin but high-resolution structural information on ligand binding to the protein has been lacking. We report here a crystallographic study of five HSA-fatty acid complexes formed using saturated medium-chain and long-chain fatty acids (C10:0, C12:0, C14:0, C16:0 and C18:0). A total of seven binding sites that are occupied by all medium-chain and long-chain fatty acids have been identified, although medium-chain fatty acids are found to bind at additional sites on the protein, yielding a total of 11 distinct binding locations. Comparison of the different complexes reveals key similarities and significant differences in the modes of binding, and serves to rationalise much of the biochemical data on fatty acid interactions with albumin. The two principal drug-binding sites, in sub-domains IIA and IIIA, are observed to be occupied by fatty acids and one of them (in IIIA) appears to coincide with a high-affinity long-chain fatty acid binding site.  相似文献   

6.
The interaction of fatty acids with rat alpha-fetoprotein and albumin was measured using a partition equilibrium method. alpha-Fetoprotein (AFP) displays one high-affinity binding site for fatty acids and albumin near two binding sites. The AFP association constants for most fatty acids were similar to those of albumin (in the 10(7) M-1 range) whereas for docosahexaenoic acid it was 9.7 x 10(8) M-1, about 50-fold higher than that corresponding to albumin. This difference justifies docosahexaenoic acid in fetal or neonatal serum being mainly bound to AFP and can indicate a highly specific role of AFP in the transport of this fatty acid.  相似文献   

7.
8.
Human serum albumin was delipidated by solvent extraction or by treatment with charcoal. Progesterone complexes formed with these albumin preparations had higher association constants than those formed with the untreated samples. The charcoal method of delipidation resulted in somewhat higher affinity constants than extraction with chloroform/methanol. Addition of 5 mol lauric acid per mol albumin reduced the association constant of the progesterone complex by approx. 50%. Studies with lauric, myristic, and palmitic acid showed that the decrease of binding affinity for progesterone was proportional to the amount of fatty acid added to albumin, and to its chain length. These results confirm and extend our previous findings of inhibition of progesterone binding to human albumin by long-chain fatty acids.  相似文献   

9.
The binding of bilirubin and the polyene fatty acids cis-parinaric acid and cis-eleostearic acid to human alpha-fetoprotein was studied using fluorescence quenching and fluorescence enhancement techniques. alpha-Fetoprotein has three fatty acid binding sites of decreasing affinity (association constants 2.1 x 10(7) M-1 9.1 X 10(5) M-1, and 1.4 x 10(5) M-1) and one relatively strong and one relatively weak bilirubin binding site (association constants 1.1 x 10(7) M-1 and 1.8 x 10(5) M-1). These association constants are slightly weaker than the corresponding association constants for binding to human albumin. Competition experiments failed to show preferential binding of polyunsaturated fatty acids. Fluorescence quenching was used to determine 11 ligand-ligand and ligand-tryptophanyl residue distances. Each of these 11 calculated distances (ranging from 19 A to 32 A) was within 5 A of the corresponding distances measured previously for human albumin (Berde, C.B., Hudson, B.S., Simoni, R.D., and Sklar, L.A. 1979, J. Biol. Chem. 254, 391-400). Thus, in addition to previously described sequence homology, immunologic cross-reactivity, and other similarities, human albumin and human alpha-fetoprotein have functional and geometric homologies.  相似文献   

10.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D(2)O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D(2)O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   

11.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D2O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D2O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   

12.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

13.
Electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopies were used to characterize the binding of spin-labeled fatty acid (SLFA) to bovine serum albumin (BSA). Association constants of three stearic acid derivatives labeled with a nitroxyl radical at C-5, C-12, or C-16 were estimated by EPR spectroscopy as the ratio of SLFA to BSA was increased from about 0 to 9. The values were compared to those for unmodified stearate. With all three SLFA, it was apparent that the nitroxyl residue modified the binding pattern. For SLFA:BSA ratios up to 1, which probably involves the site(s) on BSA most specific for long-chain FA, the C-16 derivative bound with an affinity similar to that of the natural FA. At higher ratios, the association constants for this SLFA were lower than those for stearate. The C-12 and C-5 derivatives showed only low-affinity binding relative to stearate. The spectral parameter, W, was constant for SLFA:BSA ratios between 0 and 1 in the case of C-16 compound, indicating physical homogeneity of the high-affinity binding site. At higher ratios, the spectra changed progressively, indicating inhomogeneity of the lower affinity binding sites although parallel changes in association constants were not observed. Changes in W due to Heisenberg spin exchange were ruled out. By examining the mobility profile of the bound SLFA by both EPR and ST-EPR techniques, it was shown that the nitroxyl group was maximally immobilized when attached near the center of the carbon chain of the bound SLFA.  相似文献   

14.
Docosahexaenoic acid is found to be bound to three equivalent sites on albumin with the same affinities as palmitic acid at 0–38°C, which demonstrates that ethene-1,2-diyl- and methylene-groups contribute equally to the affinity. The equilibrium dissociation constants (K dm s) for red cell membrane binding sites of linoleic- and docosahexaenoic acid at pH 7.3 are determined at temperatures between 0 and 37°C. The temperature-independent capacities for binding are 12 ± 1 and 25.4 ± 3.0 nmoles g−1 ghosts respectively. Double isotope binding experiments reveal that the unsaturated fatty acids: arachidonic-, linoleic-, docosahexaenoic-, and oleic acid have partially shared capacities in ratios approximately 1:2:4:5, in contrast to the noncompetitive binding of palmitic acid. The observations suggest a two-tier binding limitation. One is the number of protein sites binding fatty acid anions electrostatically and the other is the number of suitable annular lipids adaptively selected among membrane lipids by the hydrocarbon chain. These competition conditions are confirmed by measurements of the tracer exchange efflux at near 0°C from albumin-free and albumin-filled ghosts of linoleic- and docosahexaenoic acid, either alone or in the presence of arachidonic- and palmitic acid. Under equilibrium conditions, the calculated ratios of inside to outside membrane binding is below 0.5 for four unsaturated fatty acids. The unidirectional rate constants of translocation between the inside and the outside correlate with the number of double bonds in these fatty acids, which are also correlated with the dissociation rate constants of the complexes with albumin. The membrane permeation occurs presumably by binding of the anionic unsaturated fatty acids to an integral protein followed by channeling of the neutral form between opposite binding sites of the protein through annular lipids encircling the protein. Received: 30 June 1997/Revised: 23 February 1998  相似文献   

15.
The ability of Streptococcus pyogenes lipoteichoic acid and palmitic acid to bind to purified human plasma fibronectin was investigated. Initial studies indicated that intact fibronectin formed soluble complexes with lipoteichoic acid, resulting in a change in the mobility of fibronectin in an electrical field. Fibronectin covalently linked to agarose beads bound radiolabeled lipoteichoic acid in the acylated form but not in the deacylated form. An 18-M excess of fibronectin inhibited binding of lipoteichoic acid to the immobilized protein by 92%. Fibronectin-bound [(3)H]lipoteichoic acid could be specifically eluted with unlabeled lipoteichoic acid, as well as by fatty acid-free serum albumin. Serum albumin, which is known to contain fatty acid-binding sites capable of binding to the lipid moieties of lipoteichoic acid, inhibited the binding of lipoteichoic acid to fibronectin in a competitive fashion. The fibronectin-bound lipoteichoic acid could be eluted by 50% ethanol and various detergents but not by 1.0 M NaCl, various amino acids, or sugars. Similarly, radiolabeled palmitic acid adsorbed to fibronectin could be eluted with 50% ethanol but not with 1.0 M NaCl. Fibronectin adsorbed to a column of palmityl-Sepharose was eluted with 50% ethanol in 0.5% sodium dodecyl sulfate but not with 1.0 M NaCl or 1% sodium dodecyl sulfate alone. The binding of lipoteichoic acid to fibronectin followed first-order kinetics and was saturable. A Scatchard plot analysis of the binding data indicated a heterogeneity of lipoteichoic acid-binding sites similar to that previously found for serum albumin. Nevertheless, fibronectin contains at least one population of high-affinity binding sites for lipoteichoic acid. The binding affinity (nKa approximately 250 muM(-1)) is 2 orders of magnitude greater than the binding affinity of serum albumin. These data suggest that human plasma fibronectin contains specific binding sites for fatty acids and that lipoteichoic acid binds to these sites by way of its glycolipid moiety.  相似文献   

16.
Affinity labeling with palmitic acid was used to identify long chain fatty acid-binding sites of bovine serum albumin. [1-14C]Palmitic acid was activated by esterification with N-ethyl-5-phenyl-isoxazolium-3'-sulfonate (Woodward's Reagent K). The product was purified by chromatography and shown to compete with unesterified fatty acids for binding sites on bovine serum albumin. Activated [14C]palmitic acid coupled covalently to albumin producing [14C]palmitoyl-albumins containing from 0.12 to a maximum of 6.9 mol of attached label per mol of albumin. The presence of the covalently attached affinity label depressed binding of other long chain fatty acids to albumin. Albumin carrying 1 eq. of [14C]palmitate was cleaved using cyanogen bromide, pepsin, and trypsin. Radioactive peptides were isolated by high pressure liquid chromatography. Three peptides accounted for greater than 90% of the label. Residues labeled with [14C]palmitate were identified as Lys-116, Lys-349 and Lys-473, and the relative distribution of label was 10, 45, and 45% respectively, consistent with the presence of two strong binding sites in the COOH-terminal half of albumin and a somewhat weaker site in the NH2-terminal half.  相似文献   

17.
Human serum albumin (HSA) is one of the most abundant proteins in the circulatory system and plays a key role in the transport of fatty acids, metabolites, and drugs. For many drugs, binding to serum albumin is a critical determinant of their distribution and pharmacokinetics; however, there have as yet been no high resolution crystal structures published of drug-albumin complexes. Here we describe high resolution crystal structures of HSA with two of the most widely used general anesthetics, propofol and halothane. In addition, we describe a crystal structure of HSA complexed with both halothane and the fatty acid, myristate. We show that the intravenous anesthetic propofol binds at two discrete sites on HSA in preformed pockets that have been shown to accommodate fatty acids. Similarly we show that the inhalational agent halothane binds (at concentrations in the pharmacologically relevant range) at three sites that are also fatty acid binding loci. At much higher halothane concentrations, we have identified additional sites that are occupied. All of the higher affinity anesthetic binding sites are amphiphilic in nature, with both polar and apolar parts, and anesthetic binding causes only minor changes in local structure.  相似文献   

18.
Three spin-labeled derivatives of stearic acid and two derivatives of palmitic acid have been used to study the structure of the strong fatty acid binding site of bovine serum albumin. The steroid and indole binding sites have been studied using spin-labeled derivatives of androstol and indole, respectively. Paramagnetic resonance and fluorescence quenching data suggest that the fatty acid, steroid, and indole binding sites may be identical. The mobility of the nitroxyl group at C-8 of palmitic acid bound to albumin at a 1:1 molar ratio is unaffected when the carboxyl group is esterified. When the nitroxyl group is located at C-5 on this acid its motion is detectably increased by esterification of the carboxyl group but the magnitude of this change is small. This result suggests that the carboxyl group may play a minor role in the binding of fatty acids to the strongest fatty acid binding site of albumin. When stearic acid derivatives bearing the nitroxide at C-5, C-12, and C-16 are bound to albumin at a ligand to albumin ratio of 1, the order of mobility at 0-30 degrees is C-16 greater than C-12 congruent to C-5. Although motion at the methyl terminus is always greater than at the COOH terminus in the range 0-60 degrees, a simple monotonic increase in chain motion between the two termini is not observed. Arrhenius plots of the motion parameters for these bound fatty acids show two abrupt changes in slope. The temperature ranges for these changes are 15-23 degrees and 38-45 degrees. These results suggest that when one mole of spin-labeled fatty acid is bound to albumin, the protein undergoes a conformational change in each of these temperature ranges.  相似文献   

19.
The remarkable binding properties of serum albumin have been investigated extensively, but little is known about an important class of fatty acids, the very long-chain saturated fatty acids (VLCFA; >18 carbons). Although VLCFA are metabolized efficiently in normal individuals, they are markers for and possibly causative agents of several peroxisomal disorders. We studied the binding of [(13)C]carboxyl-enriched arachidic (C20:0), behenic (C22:0), lignoceric (C24:0), and hexacosanoic (C26:0) acids to bovine serum albumin (BSA) by (13)C-NMR spectroscopy. For each VLCFA, the NMR spectra showed multiple signals at chemical shifts previously identified for long-chain fatty acids (12-18 carbons), suggesting stabilization of binding by similar, if not identical, interactions of the fatty acid carboxyl anion with basic amino acid residues. The maximal binding (mol of VLCFA/mol of BSA) and the number of observed binding sites decreased with increasing chain length, from 4-5 for C20:0, 3-4 for C22:0, and 2 for C24:0; we validated our previous conclusion that BSA has only one site for C26:0 (Ho, J. K., H. Moser, Y. Kishimoto, and J. A. Hamilton. 1995. J. Clin. Invest. 96: 1455-1463). Analysis of chemical shifts suggested that the highest affinity sites for VLCFA are low affinity sites for long-chain fatty acids. In competition experiments with (13)C-labeled C22:0 (3 mol/mol of BSA) and unlabeled oleic acid, C22:0 bound to BSA in the presence of up to 4 mol of oleic acid/mol of BSA, but 1 mol was shifted into a different site. Our studies suggest that albumin has adequate binding capacity for the low plasma levels of VLCFA with 20 to 26 carbons, but the protein may not be able to bind longer chain VLCFA.  相似文献   

20.
Alpha-1 acid glycoprotein (AGP, orosomucoid), a major acute phase protein in plasma, displays potent cytoprotective and anti-inflammatory activities whose molecular mechanisms are largely unknown. Because AGP binds various exogenous drugs, we have searched for endogenous ligands for AGP. We found that AGP binds lysophospholipids in a manner discernible from albumin in several ways. First, mass spectrometric analyses showed that AGP isolated from plasma and serum contained lysophosphatidylcholine (LPC) enriched in mono and polysaturated acyl chains, whereas albumin contained mostly saturated LPC. Second, AGP bound LPC in a 1:1 molar ratio and with a higher affinity than free fatty acids, whereas albumin bound LPC in a 3:1 ratio but with a lower affinity than that of free fatty acids. Consequently, free fatty acids displaced LPC more avidly from albumin than from AGP. Competitive ligand displacement indicated the highest affinity for AGP to LPC20:4, 18:3, 18:1, and 16:0 (150-180 nM), lysophosphatidylserine (Kd 190 nM), and platelet activating factor (PAF) (Kd 235 nM). The high affinity of AGP to LPC in equilibrium was verified by stopped-flow kinetics, which implicated slow dissociation after fast initial binding, being consistent with an induced-fit mechanism. AGP also bound pyrene-labeled phospholipids directly from vesicles and more efficiently than albumin. AGP prevented LPC-induced priming and PAF-induced activation of human granulocytes, thus indicating scavenging of the cellular effects of the lipid ligands. The results suggest that AGP complements albumin as a lysophospholipid scavenging protein, particularly in inflammatory conditions when the capacity of albumin to sequester LPC becomes impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号