首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D McElroy  W Zhang  J Cao    R Wu 《The Plant cell》1990,2(2):163-171
  相似文献   

2.
Jeon JS  Lee S  An G 《Molecules and cells》2008,26(5):474-480
OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.  相似文献   

3.
4.
5.
J E Garbarino  T Oosumi    W R Belknap 《Plant physiology》1995,109(4):1371-1378
A polyubiquitin clone (ubi7) was isolated from a potato (Solanum tuberosum) genomic library using a copy-specific probe from a stress-induced ubiquitin cDNA. The genomic clone contained a 569-bp intron immediately 5' to the initiation codon for the first ubiquitin-coding unit. Two chimeric beta-glucuronidase (GUS) fusion transgenes were introduced into potato. The first contained GUS fused to a 1156-bp promoter fragment containing only 5' flanking and 5' untranslated sequences from ubi7. The second transgene contained GUS translationally fused to the carboxy terminus of the first ubiquitin-coding unit and thus included the intron present in the 5' untranslated region of the polyubiquitin gene. Both ubi7-GUS transgenes were activated by wounding in tuber tissue and in leaves by application of exogenous methyl jasmonate. They were also expressed constitutively in the potato tuber peel (outer 1-2 mm). Both transgenes were actively expressed in mature leaves. Exceptionally high levels of expression were observed in senescent leaves. Transgenic clones containing the ubi7 intron and the first ubiquitin-coding unit showed GUS expression levels at least 10 times higher than clones containing GUS fused to the intronless promoter.  相似文献   

6.
7.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyl-transferase (FTase) gene was examined using transgenic expression of the β-glucuronidase (GUS) gene fused to a 3.2 kb 5′ upstream sequence of the gene encoding the pea FTase β subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase β subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

8.
Hydroxyproline-rich glycoproteins (HRGP) are structural components of the plant cell wall. Hrgp genes from maize and related species have a conserved 500 bp sequence in the 5'-flanking region, and all Hrgp genes from monocots have an intron located in the 3' untranslated region. To study the role of these conserved regions, several deletions of the Hrgp gene were fused to the beta-glucuronidase ( GUS) gene and used to transform maize tissues by particle bombardment. The overall pattern of GUS activity directed by sequential deletions of the Hrgp promoter was different in embryos and young shoots. In embryos, the activity of the full-length Hrgp promoter was in the same range as that of the p35SI promoter construct, based on the strong 35S promoter, whereas in the fast-growing young shoots it was 20 times higher. A putative silencer element specific for young shoots was found in the -1,076/-700 promoter region. Other major cis elements for Hrgp expression are probably located in the regions spanning -699/-510 and -297/-160. Sequences close to the initial ATG and mRNA leader were also important since deletion of the region -52/+16 caused a 75% reduction in promoter activity. The presence of the Hrgp intron in the 3' untranslated region changed the levels of GUS activity directed by the Hrgp and the 35S promoters. This pattern of activity was complex, and was dependent on the promoter and cell type analysed.  相似文献   

9.
Activity of a maize ubiquitin promoter in transgenic rice   总被引:27,自引:0,他引:27  
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants.  相似文献   

10.
Forward BS  Osusky M  Misra S 《Planta》2002,215(4):569-576
A DNA sequence representing the promoter region of the Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) luminal binding protein PmBiP (PmBiPPro1) was isolated using inverse polymerase chain reaction (iPCR). Transient expression analysis of PmBiPPro1 fused to the beta-glucuronidase (GUS) reporter gene demonstrated that this promoter is functional in germinating Douglas-fir embryos. Transgenic Arabidopsis plants containing PmBiPPro1:GUS reporter gene constructs revealed strong staining associated with actively dividing/expanding cells and secretory tissues in developing seedlings. Wounding of cotyledons resulted in an increase in local staining associated with cells surrounding the wound site. Deletion analysis showed that elements necessary for basal-level expression reside within a -261 to +16 bp region, although upstream elements are necessary for higher-level expression in germinating Douglas-fir embryos, developing Arabidopsis seedlings and wounded cotyledons. Correlation of the observed expression pattern with the known function of BiP suggests that pathways controlling expression are highly conserved between angiosperms and gymnosperms.  相似文献   

11.
12.
Introns are important sequence elements that modulate the expression of genes. Using the GUS reporter gene driven by the promoter of the rice (Oryza sativa L.) polyubiquitin rubi3 gene, we investigated the effects of the 5' UTR intron of the rubi3 gene and the 5' terminal 27 bp of the rubi3 coding sequence on gene expression in stably transformed rice plants. While the intron enhanced GUS gene expression, the 27-bp fused to the GUS coding sequence further augmented GUS expression level, with both varying among different tissues. The intron elevated GUS gene expression mainly at mRNA accumulation level, but also stimulated enhancement at translational level. The enhancement on mRNA accumulation, as determined by realtime quantitative RT-PCR, varied remarkably with tissue type. The augmentation by the intron at translational level also differed by tissue type, but to a lesser extent. On the other hand, the 27-bp fusion further boosted GUS protein yield without affecting mRNA accumulation level, indicating stimulation at translation level, which was also affected by tissue type. The research revealed substantial variation in the magnitudes of intron-mediated enhancement of gene expression (IME) among tissues in rice plants and the importance of using transgenic plants for IME studies.  相似文献   

13.
We have previously shown by RNA gel blot analyses that the tobacco polyubiquitin-encoding gene Ubi.U4 is expressed in a complex pattern during plant development (Genschik et al., 1994). In order to study its tissue-specific expression, we cloned the fragment containing the –263 bp proximal promoter of the gene, the leader intron and the first ubiquitin monomer in front of the reporter GUS gene. Histochemical analyses for GUS activity during tobacco plant development revealed that the gene is expressed at variable amounts in many plant tissues with high levels in metabolically active and/or dividing cells and in the vascular tissues of the plant. We also analysed the expression pattern of constructs in which either the intron or the intron together with the first ubiquitin monomer were deleted. Our results indicate that the ubiquitin leader intron is not only a quantitative determinant of gene expression but may also influence the tissue-specific expression pattern.  相似文献   

14.
水稻OsBP-73基因表达需要其内含子参与   总被引:7,自引:0,他引:7  
该实验室以前的研究表明,水稻OsBP-73基因含有2个外显子和1个长度为2 471 bp的内含子.该文报告用OsBP-73基因ATG翻译起始密码子(在第1外显子中)上游序列(1- 818~ 215)与GUS基因构成嵌合质粒pRSSl,将该质粒转化水稻后,在抗性愈伤组织和转基因植株中未能检测到GUS基因的表达.只有用含有完整的内含子及其上游序列(1 818~ 2 844)与GUS基因构成嵌合质粒(p13GNF)时,才能在p13GNF的转基因抗性愈伤组织和植株中检测到GUS基因的表达.实验还证明,单是内含子序列并不能驱动GUS基因在转基因水稻中表达.由此推测:OsBP-73基因的启动子序列驱动基因表达时,需要基因内含子的参与.  相似文献   

15.
16.
The rha1 gene from Arabidopsis encodes a small GTP binding protein belonging to the Ypt/Rab family. Transgenic Arabidopsis plants containing the promoter region of the rha1 gene fused to the beta-glucuronidase (gus) reporter gene revealed gus expression limited mainly to the guard cells of stomata, the stipules, and the root tip of young plants. In flowering plants, expression was found predominantly in the receptacle and in guard cells of the different flower organs. High GUS activity could also be seen in callus tissue and developing seeds. No detectable activity was present in other plant tissues; activity could not be induced by various treatments. GUS activity was visualized histochemically using both 5-bromo-4-chloro-3-indolyl beta-D-glucuronide and a newly developed GUS substrate: Sudan II-beta-glucuronide. The latter precipitates as red crystals at the site of GUS activity. Results obtained by the gus analysis were confirmed by whole-mount mRNA in situ hybridization. A hypothesis for the function of the Rha1 protein is discussed.  相似文献   

17.
18.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

19.
20.
The first intron (EPI) of rice 5-enolpyruvylshikimate 3-phosphate synthase gene was isolated by PCR from one clone with genomic EPSP synthase gene. Sequence analysis showed that the first intron is 704 bp in length with 36.2% G+C content. To investigate its effect on expression of foreign gene, we inserted the first intron between CaMV35S promoter and β-glucuronidase (GUS) gene. The transient expression results showed that GUS could be expressed effectively with EPI. The GUS activity in transgenic tobacco shows that the EPI can greatly enhance the expression level of β-glucuronidase (P < 0.01) compared with transgenic tobacco without the first intron, and 3-to 6-fold increase in GUS activity in some transgenic tobaccos. Northern blot indicated the first intron was spliced from GUS pre-mRNA, and the steady-state mRNA levels of GUS with EPI in transgenic tobaccos were higher than that in transgenic tobacco without EPI, which suggested that the first intron of EPSP was a non-translated intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号