首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The amplitude-coding pyramidal neurons of the first-order nucleus in weakly electric gymnotiform fish (Eigenmannia), the electrosensory lateral line lobe (ELL), exhibit 2 major physiological transformations of primary afferent input. Pyramidal cells rapidly adapt to a step change in amplitude, and they have a center/surround receptive-field organization. This study examined the physiological role of GABAergic inhibition on pyramidal cells. GABAergic synapses onto the somata of pyramidal cells primarily originate from granule-cell interneurons along with descending input. 2. Pyramidal cells fall into two physiologically distinct categories: E units, which are excited by a rise in stimulus amplitude, and I units, which are inhibited by a rise in stimulus amplitude. Microiontophoretic application of bicuculline methiodide onto both types of pyramidal cells increased the time constant of adaptation, defined as the time required for the neuron's response to decay to 37% of its maximum value, by 70-90%. The peak firing rate of E units to a step increase in stimulus amplitude increased by 49%, while the firing rate of I units did not change significantly. 3. Bicuculline application demonstrated that GABAergic inhibition may contribute to the strict segregation of E and I response properties. In the presence of bicuculline, many E units (normally excited only by stimulus amplitude increases) became excited by both increases and decreases; many I units (normally excited only by amplitude decreases) also became excited to increases. 4. The size of the excitatory receptive-field of E units was not affected by bicuculline, although response magnitude increased. The inhibitory surround increased in spatial extent by 175% with bicuculline administration. Neither the size of the I unit receptive-field center nor the response magnitude changed in the presence of bicuculline. The antagonistic surround of I units, however, increased by 49%. 5. The anatomy of the ELL is well understood (see Carr and Maler 1986). The physiological results obtained in this study, along with the results of Bastian (1986a, b), further our understanding of the functional role of the ELL circuitry. Our results suggest that spatial and temporal response properties of pyramidal cells are regulated by different but interacting inhibitory interneurons, some of which use GABA as a neurotransmitter. The activity of these interneurons is in turn controlled by descending feedback systems.  相似文献   

2.
《Journal of Physiology》1996,90(5-6):339-341
We report two experiments conducted on a radial arm maze in the mouse showing that training could either enhance or reduce the efficacy of the fimbria-lateral septal synapses. It is suggested that the direction of change is determined by the kind of situation the animal is faced with (ie trial-independent or trial-dependent, respectively).  相似文献   

3.
Inhibitory and excitatory connections of remarkably precise topographic order are characteristic features of the mammalian auditory system, particularly within the superior olivary complex (SOC). Little is known about the requirements for the correct development of these specific connections. Previous in vivo experiments have demonstrated a high expression of calcium-binding proteins in this system during development, pointing to the need for precise calcium regulation. Here, we have employed an organotypic slice culture from the above neuronal network and analyzed the requirements for the maintenance and development of this system in vitro. When slices from neonatal rats were incubated in standard culture medium for up to 7 days, we found no organotypic features. Only if 25 mM KCl was added to the culture medium, the cytoarchitecture of the nuclei, the neuronal morphology, and the specificity and topography of internuclear connections were indistinguishable from that in vivo. The addition of calcium channel blockers (MgCl2 and nifedipine) to the high-KCl medium reduced organotypicity drastically, indicating that a depolarization-induced increase of intracellular calcium is indispensable. Furthermore, the temporal course of the expression of the calcium-binding protein parvalbumin in culture under high KCl mimics that in vivo, demonstrating developmental processes during incubation. The need for calcium influx into neurons of this auditory network in vitro (which is not seen in other slice culture systems) strengthens the hypothesis that an optimal calcium concentration is exceptionally important in auditory neurons. The effect of KCl in the slice cultures may substitute for input activity regulating intracellular calcium in auditory neurons in vivo. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 97–112, 1998  相似文献   

4.
5.
The neuropeptide oxytocin has been implicated in the regulation of affiliative behavior and maternal responsiveness in several mammalian species. Rodent species vary considerably in the expression of juvenile alloparental behavior. For example, alloparental behavior is spontaneous in juvenile female prairie voles (approximately 20 days of age), takes 1-3 days of pup exposure to develop in juvenile rats, and is nearly absent in juvenile mice and meadow voles. Here, we tested the hypothesis that species differences in pup responsiveness in juvenile rodents are associated with oxytocin receptor (OTR) density in specific brain regions. We found that OTR density in the nucleus accumbens (NA) is highest in juvenile prairie voles, intermediate in juvenile rats, and lowest in juvenile mice and meadow voles. In the caudate putamen (CP), OTR binding was highest in prairie voles, intermediate in rats and meadow voles, and lowest in mice. In contrast, the lateral septum (LS) shows an opposite pattern, with OTR binding being high in mice and meadow voles and low in prairie voles and rats. Thus, alloparental responsiveness in juvenile rodents is positively correlated with OTR density in the NA and CP and negatively correlated with OTR density in the LS. We then investigated whether a similar receptor-behavior relationship exists among juvenile female prairie voles by correlating individual variation in alloparental behavior with variation in OTR density. The time spent adopting crouching postures, the most distinctive component of alloparental behavior in juveniles, was positively correlated with OTR density in the NA (r = 0.47) and CP (r = 0.45) and negatively correlated with OTR density in the lateral septum (r = -0.53). Thus, variation in OTR density in the NA, CP, and LS may underlie both species and individual differences in alloparental care in rodents.  相似文献   

6.
《Current biology : CB》2022,32(23):5008-5021.e8
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

7.
Summary The septal region represents an important telencephalic center integrating neuronal activity of cortical areas with autonomous processes. To support the functional analysis of this brain area in the guinea pig, the afferent connections to the lateral septal nucleus were investigated by the use of iontophoretically applied horseradish peroxidase (HRP). Retrogradely labeled perikarya were located in telencephalic, diencephalic, mesencephalic and metencephalic sites. The subnuclei of the lateral septum (pars dorsalis, intermedia, ventralis, posterior) receive afferents from the (i) medial septal nucleus, diagonal band of Broca (pars horizontalis and pars ventralis), and the principal nucleus of the stria terminalis, the hippocampus, and amygdala (nucleus medialis); (ii) the medial habenular nucleus, and the para- (peri-) ventricular, parataenial and reuniens nuclei of the thalamus; the anterior, lateral and posterior hypothalamic areas in particular, the medial and lateral preoptic, suprachiasmatic, periventricular, paraventricular, arcuate, premammillary, and supramammillary nuclei; (iii) the periaquaeductal grey, ventral tegmental area, nucleus interfascicularis, nucleus reticularis linearis, central linear nucleus, interpeduncular nucleus; (iv) dorsal and medial raphe complex, and locus coeruleus. Each subnucleus of the lateral septum displays an individual, differing pattern of afferents from the above-described regions. Based on a double-labeling method, the vasopressinergic and serotonergic afferents to the lateral septum were found to originate in the nucleus paraventricularis hypothalami and the raphe nuclei, respectively.Abbreviations ARC arcuate nucleus - BNST bed nucleus of the stria terminalis - CL central linear nucleus - DBBh diagonal band of Broca (pars horizontalis) - DBBv diagonal band of Broca (pars ventralis) - DR dorsal raphe nucleus - HC hippocampus - IF interfascicular nucleus - IP interpeduncular nucleus - LC locus coeruleus - LDT laterodorsal tegmental nucleus - LHA lateral hypothalamic area - LPO lateral preoptic area - LSN lateral septal nucleus - MA medial amygdaloid nucleus - MH medial habenular nucleus - MPO medial preoptic region - MR medial raphe nucleus - MSN medial septal nucleus - PAG periaquaeductal grey - PEN periventricular nucleus - PHA posterior hypothalamic area - PMd premammillary region (pars dorsalis) - PMv premammillary region (pars ventralis) - PT parataenial nucleus - PVN paraventricular hypothalamic nucleus - PVT paraventricular thalamic nucleus - RE nucl. reuniens - RL nucl. reticularis linearis - SCN suprachiasmatic nucleus - SMl supramammillary region (pars lateralis) - SMm supramammillary region (pars medialis) - SUB subiculum - TS triangular septal nucleus - VTA ventral tegmental area - ac anterior commissure - bc brachium conjunctivum - bp brachium pontis - cc corpus callosum - fr fasciculus retroflexus - fx fornix - ml medial lemniscus - mlf fasciculus longitudinalis medialis - mp mammillary peduncle - mt mammillary tract - oc optic chiasm - on optic nerve - pc posterior commissure - pt pyramidal tract - sm stria medullaris - st stria terminalis - vhc ventral hippocampal commissure Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

8.
Summary The location of the cells giving rise to the methionine-enkephalin (Met-Enk)-ergic innervation of the lateral septal nucleus has been investigated in the rat by combining immunohistochemistry and retrograde axonal tracing. Small volumes (0.06 l) of apo-horseradish peroxidase (Apo-HRP) conjugated to wheat-germ agglutinin (WGA) and coupled with colloidal gold particles (WGA-ApoHRP-gold) were injected into the lateral septum. The retrogradely labeled cell bodies were visualized by silver intensification of the gold particles on Vibratome sections that were subsequently processed for immunohistochemistry for Met-Enk. Cells labeled with WGA-ApoHRP-gold were observed in the septal area, throughout the hypothalamus (mainly in the perifornical and lateral nuclei) and in the mesencephalon. The localization of Met-Enk-immunoreactive cells was as previously described. With the exception of a few septal cells close to the injection site, doubly labeled cells were found only in the perifornical nucleus of the hypothalamus. Almost all perifornical magnocellular cells were doubly labeled ipsilateral to the injection site, whereas on the opposite side, only about 25% of the Met-Enk-immunoreactive cells contained WGA-ApoHRP-gold. Other brain regions containing retrogradely labeled or Met-Enk-immunoreactive cells (particularly the raphe nuclei) did not show double-labeled neurons. This study demonstrates, using a new and sensitive technique for specific neurochemical tracing of tracts, that the origin of the Met-Enk-ergic innervation of the rat lateral septal nuclei lies in the magnocellular perifornical nuclei of the hypothalamus. The precise involvement of this pathway in limbic functions remains to be determined.  相似文献   

9.
By the use of antisera to met-enkephalin and leu-enkephalin, enkephalin-containing structures were visualized in the lateral septum of the guinea-pig brain. The present results do not reveal immunoreactive perikarya in this area. The immunostaining is exclusively located in numerous nerve fibers and endings mostly encompassing neuronal perikarya, which accounts for the fact that at the light-microscopic level cellular somata appear to be immunostained. The immunoreactive terminals and fibers contain granules approximately 110 nm in diameter and synaptic vesicles. The origin and the functional role of these numerous enkephalin terminals remain to be established.  相似文献   

10.
The spatial summation characteristic in the receptive fields of cat lateral geniculate cells were investigated. First, the central area of the receptive field was determined using a spot of light. Then the response of the cell were obtained using disc-shaped stimuli of various radii located in the middle point of the receptive field center. When the radius was increased gradually, the response tended to increase, at first, until it reached a peak value and began to decrease thereafter. The radius where the peak response took place was generally less than that of the receptive field center. Furthermore, this radius decreased when the intensity of the stimulus light was increased. These neurophysiological findings could be simulated by a model. The model consists of two parts. The first part receives the input from the photoreceptors. It is of homogeneous structure with shunting inhibition. The second part receives the input from the first part. The structure is characterized by the conventional center-surround type lateral interaction.  相似文献   

11.
The objective of the present study was to determine the rostrocaudal distribution and the effect of reduced food intake (60% of the average daily food intake for 1-4 weeks) on the amount of leucine-enkephalin (Leu-enk), neuropeptide Y (NPY) and galanin (Gal) in the lateral septum of male rat brain. Using pre-embedding immunocytochemistry combined with densitometry on 60 microm serial vibratome sections we found that in control animals Leu-enk-immunoreactive elements showed an increasing density from rostral towards the medial part of the septum, then a gradual decrease towards the caudal direction. The distribution of NPY proved to be rather even along the examined sequence of sections with two smaller peaks roughly at the 1/3 and 2/3 of the rostrocaudal axis. Gal showed similar distribution but the peaks were shifted to more caudal direction. We also found that Leu-enk forms the most dense plexus followed by a moderate amount of NPY-positive axonal meshwork. Gal was present in the lowest amount along the lateral septal nuclei. The effect of reduced food intake was marked and differential in the case of the three examined peptides. During the first 2 weeks of reduced food intake NPY-immunoreactivity was upregulated as compared to the control, then it was reduced close to the control value by the 4th week. The changes in Gal immunoreactivity showed similar pattern. The average relative density of Leu-enk-immunoreactive elements immediately decreased as a result of reduced food intake for 1 week and it gradually decreased by the end of the 4th week. These results indicate that reduced food intake affects the expression of NPY, Gal and Leu-enk not only in the relevant hypothalamic neuroendocrine centres, but also in the lateral septal area.  相似文献   

12.
《Neuron》2022,110(12):1959-1977.e9
  1. Download : Download high-res image (270KB)
  2. Download : Download full-size image
  相似文献   

13.
Bezzi M 《Bio Systems》2005,79(1-3):183-189
A central problem in neural coding is to understand what are the features of the stimulus that are encoded by the neural activity. Assuming that neuronal coding is optimized for information transmission, we can use mutual information maximization for extracting the relevant features encoded in certain activity patterns. We show that this algorithm can be successfully applied to the study of different encoding strategies for location and direction of movement in hippocampal and lateral septal cells. Using this approach, we find that in lateral septum, a significant amount of information about location can be encoded in patterns that are not place-fields.  相似文献   

14.
GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs.These simulations revealed for GABAergic synapses located at the soma an EGABAThr close to action potential threshold (EAPThr), while with increasing dendritic distance EGABAThr shifted to positive values. The impact of GABA on AMPA-mediated inputs revealed a complex temporal and spatial dependency. EGABAThr depends on the temporal relation between GABA and AMPA inputs, with a striking negative shift in EGABAThr for AMPA inputs appearing after the GABA input. The spatial dependency between GABA and AMPA inputs revealed a complex profile, with EGABAThr being shifted to values negative to EAPThr for AMPA synapses located proximally to the GABA input, while for distally located AMPA synapses the dendritic distance had only a minor effect on EGABAThr. For tonic GABAergic conductances EGABAThr was negative to EAPThr over a wide range of gGABAtonic values. In summary, these results demonstrate that for several physiologically relevant situations EGABAThr is negative to EAPThr, suggesting that depolarizing GABAergic responses can mediate excitatory effects even if EGABA did not reach EAPThr.  相似文献   

15.
Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to monitor extracellular concentrations of norepinephrine (NE) and GABA. During systemic hypoglycemia, induced by insulin (1.0 U/kg), NE concentrations increased in the VMH (P < 0.05) and PVH (P = 0.06) in a bimodal fashion during the first 10 min and 20-30 min after insulin administration. In the VMH, GABA concentrations increased (P < 0.05) in a similar manner as NE. Extracellular NE concentrations in the LHA were slightly lower (P = 0.13), and GABA levels remained at baseline. The increases in NE and GABA in the VMH were absent during euglycemic clamp; however, NE in the PVH still increased, reflecting a direct response to hyperinsulinemia. On the basis of these data, we propose that the activity of noradrenergic afferents to the medial hypothalamus is increased during hypoglycemia and influences the activity of local GABAergic systems to activate appropriate physiological compensatory mechanisms.  相似文献   

16.
Summary Electrophysiological evidence obtained with current- and voltage clamp experiments from single L-neurons of the ocellar nerve of locust (Locusta migratoria) questions a direct synaptic feedback from these neurons onto the photoreceptors. The synaptic currents recorded under voltage clamp reflected the photoresponse of the L-neuron, despite the fact it developed no synaptic activity under these conditions. This result is contrary to GABAergic feedback models proposed in the literature. Electrophysiological recordings, as well as immunocytochemistry revealing GABA and glutamate decarboxylase, indicated a possible contribution of S-neurons in such a feedback system. A population of probable S-neurons whose somas were in the pars intercerebralis adjacent to the ocellar nerve tracts was heavely labelled. About 10 fibres entered each tract and formed a dense network of fine arborizations within the ocellar plexiform layer. L-neurons showed no GABA-immunoreactivity. Based on these data a new model for GABAergic feedback is proposed and discussed.  相似文献   

17.
18.
Summary The interatrial septum of the rat heart contains cells which show a strong intensive-yellow paraformaldehyde-induced fluorescence. By electron microscopy these cells are characterized by an abundance of dense-core vesicles.Cholinergio axons form axo-somatic synaptic contacts with the catecholamine-containing cells. These cells, packed with dense-core vesicles, are frequently interdigitated and interconnected by zonulae and maculae adhaerentes and occludentes. The catecholamine-containing cells are surrounded by satellite cells either individually or in groups.The catecholamine-containing cells, which bear blunt, plumpish processes, can be subdivided, on the basis of position and morphology into two types. One class of cells lies within the fibroblast capsule of the intra-atrial ganglion (van der Zypen, Hasselhorst, Merz and Fillinger, 1974). A second aggregation of catecholamine-containing cells occurs outside the ganglia in close proximity to capillaries. The capillaries exhibit pores in the area of contact with the catecholaminergic cells. The structure of these catecholamine-containing cells is described and their possible function discussed.
Zusammenfassung Im Septum interatriale des Rattenherzens treten Zellen in Erscheinung, die nach Paraformaldehyd-Bedampfung eine intensive hellgelbliche Fluoreszenz zeigen. Diese Zellen zeichnen sich durch einen großen Reichtum an dense-core vesicles aus. Cholinerge Axone bilden axo-somatische Synapsen an den katecholaminhaltigen Zellen aus. Die mit dense-core vesicles angefüllten Zellen sind oft ineinander verzahnt und durch Zonulae adhaerentes verbunden. Einzeln oder in Gruppen werden die katecholamin-enthaltenden Zellen von Satelliten-Zellen umgeben.Die mit kurzen plumpen Fortsätzen versehenen katecholaminhaltigen Zellen lassen aufgrund ihrer Lage und eines andersartigen Baues zwei Typen erkennen. Eine Gruppe von Zellen liegt innerhalb der Fibrozytenkapsel des Ganglion intraatriale (van der Zypen, Hasselhorst, Merz und Fillinger, 1974). Eine zweite Ansammlung von Katecholamin enthaltenden Zellen findet sich außerhalb der Ganglien in engem Kontakt zu Kapillaren. Die Kapillaren weisen im Bereich des Kontaktes mit den katecholaminergen Zellen Poren auf. Die Struktur dieser Zellen wird geschildert und ihre mögliche Funktion diskutiert.
  相似文献   

19.
E Colomb  F Kopp  F Spyratos  P M Martin 《Cytometry》1989,10(3):263-272
The authors have developed a new methodology for characterizing in situ the cell cycle of human mammary epithelial cell lines. Using a SAMBA 200 cell image processor (scanning cytometry), 15 densitometric and textural parameters were computed on each Feulgen-stained nucleus. Parameters computed from the grey level cooccurrence and run-length section matrices allowed assessment of the chromatin pattern. Multiparametric analysis of data defined: 1) the relative position of each cell; 2) the relative positions of groups of cells, each group corresponding to a definite phase of the cell cycle; and 3) the function of these parameters best separating these phases. Files then were constructed for each phase: G0/G1, S, G2/ and M. Using these three files as a reference to classify cells, it was possible to ascertain the phase of the cell cycle for each cell of a population. The MDA AG human cell line synchronized by mitotic selection was used as a model to develop this method. The criteria used to assign cells to G0/G1, S, or G2 was DNA content. Classification in M phase was achieved by visual identification of mitotic cells. This method was checked on unsynchronized MDA AG and then applied to other human cell lines (MDA MB231, MCF-7, T47D C111). Comparison of results obtained by scanning cytometry and flow cytometry showed the proportion of cells assigned to G0/G1, S, and G2/M by the two methods to be similar. This new method removes some of the limitations of flow cytometry by 1) allowing visual verification of each cell analyzed; 2) lowering the number of cells required for study; 3) discriminating between G2 and M; and 4) preserving cell topography.  相似文献   

20.
The synaptic connectivity between rod bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina was studied using two immunocytochemical markers. Rod bipolar cells were stained with an antibody specific for protein kinase C (PKC, α isoenzyme), and GABAergic neurons were stained with an antiserum specific for glutamic-acid decarboxylase (GAD). Some amacrine cells were also labeled with the anti-PKC antiserum. All PKC-labeled amacrine cells examined showed GABA immunoreactivity, indicating that PKC-labeled amacrine cells constitute a subpopulation of GABAergic amacrine cells in the rat retina. A total of 150 ribbon synapses established by rod bipolar cells were observed in the IPL. One member of the postsynaptic dyads was always an unlabeled AII amacrine cell process, and the other belonged to an amacrine-cell process showing GAD immunoreactivity. The majority (n=92) (61.3%) of these processes made reciprocal synapses back to the axon terminals of rod bipolar cells. In addition, 78 conventional synapses onto rod bipolar axons were observed, and among them 52 (66.7%) were GAD-immunoreactive. Thus GABA provides the major inhibitory input to rod bipolar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号