首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene B4 (5(S),12(R)-di-hydroxy-eicosa-6,14-cis-8,10-trans-tetraenoic acid [LTB4]) is a product of the 5-lipoxygenation of arachidonic acid, which elicits human PMN leukocyte chemotactic responses in vitro that are 50% of the maximal level at concentrations of 3 X 10(-9) M to 10(-8) M and are maximal at 2 X 10(-8) M to 10(-7) M. The specific binding of highly purified [3H]LTB4 to human PMN leukocytes was assessed both by extracting the unbound and weakly bound [3H]LTB4 with acetone at -78 degrees C and by centrifuging the PMN leukocytes through cushions of phthalate oil to separate the unbound from bound [3H]LTB4. The levels of total binding of [3H]LTB4 and of nonspecific binding of [3H]LTB4, in the presence of a 1500-fold molar excess of nonradioactive LTB4, were approximately two times higher with the phthalate oil method. Scatchard plots of the concentration dependence of the specific binding (total - nonspecific binding) of [3H]LTB4 to PMN leukocytes were linear for the acetone extraction and phthalate oil methods and revealed dissociation constants of 10.8 X 10(-9) M and 13.9 X 10(-9) M, respectively, and mean of 2.6 X 10(4) and 4.0 X 10(4) receptors per PMN leukocyte. The 5(S),12(S)-all-trans-di-HETE analog of LTB4 and 5-HETE competitively inhibited by 50% the binding of [3H]LTB4 to PMN leukocytes at respective concentrations that evoked half-maximal chemotactic responses, whereas neither N-formyl-methionyl-leucyl-phenylalanine nor chemotactic fragments of C5 inhibited the binding. Human erythrocytes exhibited no specific binding sites for [3H]LTB4. Human PMN leukocytes possess a subset of receptors for LTB4 that are distinct from those specific for peptide chemotactic factors.  相似文献   

2.
Lipoxin A4 stimulates rapid lipid remodeling and a pertussis toxin-sensitive release of arachidonic acid in polymorphonuclear leukocytes (PMN) (Nigam, S., Fiore, S., Luscinskas, F.W., and Serhan, C.N. (1990) J. Cell. Physiol. 143, 512-523) and has been shown to inhibit leukocyte responses in several systems. To examine the basis underlying these actions, we have prepared [11,12-3H]lipoxin A4 (LXA4) and characterized its interactions with human PMN. Time course studies (0-90 min) with intact PMN demonstrated cell association of 3H label which was specific and reversible. PMN bound [3H]LXA4 with a Kd of 0.5 +/- 0.3 nM, representing approximately 1,830 sites/PMN, and the Hill plot value of 1.9 suggests cooperative binding. [3H]LXA4 binding was stereoselective since neither leukotriene B4 (LTB4), lipoxin B4 (LXB4), (6S)-LXA4, 11-trans-LXA4, nor SKF 104353 competed for [3H]LXA4-specific binding while LTD4 and LTC4 partially competed. Subcellular fractionation revealed that specific binding with [3H]LXA4 was associated with membrane (42.1%)-, granule (34.5%)-, and nuclear (23.3%)-enriched fractions, a distribution distinct from that of [14,15-3H] LTB4 binding. [11,12-3H]LXA4-specific binding was modulated by guanosine analogs, suggesting the involvement of G proteins. A fluorescent LXA4 derivative (methyl-7-methoxycoumarin-LXA4) competed with [3H]LXA4 binding to intact PMN and showed specific and reversible binding as monitored by flow cytometric analysis. These results indicate that PMN possess specific recognition sites for LXA4 which may mediate its actions.  相似文献   

3.
The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of [1-14C]arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of [1-14C]arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of [1-14C]arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke [1-14C]AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with [1-14C]arachidonic acid and [3H]palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of [1-14C]arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of [1-14C]arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of [3H]LTB4 to its receptor on neutrophils. In addition, they did not stimulate aggregation or induce adhesion of neutrophils to human endothelial cells. Results indicate that both LXA4 and LXB4 stimulate the rapid remodeling of neutrophil phospholipids to release arachidonic acid without provoking either aggregation or the formation of lipoxygenase-derived products within a similar temporal and dose range. Together they indicate that LXA4 and LXB4 display selective actions with human neutrophils and suggest that these eicosanoids possess unique profiles of action which may regulate neutrophil function during inflammation.  相似文献   

4.
The uptake of Quin-2 by human polymorphonuclear (PMN) leukocytes permitted accurate fluorimetric quantification of the cytosolic concentration of intracellular calcium [( Ca+2]in), without altering the expression of the two subsets of leukotriene B4 (LTB4) receptors, as assessed by the binding of [3H]LTB4. Chemotactic concentrations of LTB4 elicited a rapid increase in [Ca+2]in, which reached a peak within 0.6 to 1 min and then decayed back to baseline levels by 6 to 10 min. The maximal increase and the half-maximal increase in [Ca+2]in were achieved by LTB4 at mean concentrations of 5 X 10(-10) M and 2 X 10(-10) M, respectively, where the binding of LTB4 to high-affinity receptors predominates. A rank order of potency of LTB4 greater than 5(S),12(S)-6-trans-LTB4 greater than 12(S)-LTB4 was established for the elicitation of increases in [Ca+2]in, which reflects the binding of the isomers to low-affinity receptors. PMN leukocytes were preincubated with 10(-8) M LTB4 to induce chemotactic deactivation, which eliminates the expression of high-affinity receptors without altering the expression of the low-affinity receptors for LTB4. LTB4 elicited an increase in [Ca+2]in in the deactivated PMN leukocytes with an EC50 of 3 X 10(-8) M, which is similar to the Kd for LTB4 binding to the low-affinity receptors. Two lines of cultured human leukemic cells, IM-9 and HL-60, did not bind LTB4 specifically and did not show any change in [Ca+2]in upon the addition of 3 X 10(-8) M LTB4. The HL-60 human promyelocytic leukemia cell line was induced to differentiate in 1% dimethyl sulfoxide to leukocytes with more mature myelocytic characteristics. Differentiated HL-60 cells expressed an average of 54,000 low-affinity receptors for LTB4 per cell with an average dissociation constant of 7.3 X 10(-8) M and concurrently developed the capacity to respond to LTB4 with an increase in [Ca+2]in. The binding of LTB4 to either high-affinity or low-affinity receptors appears to be sufficient to initiate an increase in [Ca+2]in in human PMN leukocytes and differentiated HL-60 cells. The specificity of LTB4 receptors in transducing maximum increases in [Ca+2]in is determined by the subset of receptors that predominate as a result of the concentration of LTB4 and the state of the responding cells.  相似文献   

5.
Leukotriene B4 binding to human neutrophils   总被引:5,自引:0,他引:5  
[3H] Leukotriene B4 (LTB4) binds concentration dependently to intact human polymorphonuclear leukocytes (PMN's). The binding is saturable, reaches equilibrium in 10 min at 4 degrees C, and is readily reversible. Mathematical modeling analysis reveals biphasic binding of [3H] LTB4 indicating two discrete populations of binding sites. The high affinity binding sites have a dissociation constant of 0.46 X 10(-9)M and Bmax of 1.96 X 10(4) sites per neutrophil; the low affinity binding sites have a dissociation constant of 541 X 10(-9)M and a Bmax of 45.16 X 10(4) sites per neutrophil. Competitive binding experiments with structural analogues of LTB4 demonstrate that the interaction between LTB4 and the binding site is stereospecific, and correlates with the relative biological activity of the analogs. At 25 degrees C [3H] LTB4 is rapidly dissociated from the binding site and metabolized to 20-OH and 20-COOH-LTB4. Purification of neutrophils in the presence of 5-lipoxygenase inhibitors significantly increases specific [3H] LTB4 binding, suggesting that LTB4 is biosynthesized during the purification procedure. These data suggest that stereospecific binding and metabolism of LTB4 in neutrophils are tightly coupled processes.  相似文献   

6.
Rat PMN isolated from peripheral blood show a small amount of high-affinity (specific) binding of [3H]-LTB4 at nanomolar concentrations. This binding is reversible and has a stereospecificity similar to rat PMN aggregation in response to several LTB4 analogs. This population of binding sites shares many characteristics with a population of high-affinity binding sites in human PMN; however, human PMN bind a significantly greater amount of [3H]-LTB4 to a second population of specific binding sites that is not present in rat PMN. The aggregation responses of human and rat peripheral blood PMN to LTB4 are similar in magnitude and specificity, but unlike human PMN, LTB4 fails to elicit a chemotactic response in rat PMN at concentrations from 10(-10) M to 10(-6) M. Rat PMN also fail to metabolize exogenous LTB4 when compared with human PMN. These data suggest that different PMN functions, such as chemotaxis and aggregation, may involve different classes of specific receptors. The finding that rat PMN do not exhibit chemotaxis to LTB4 calls for a reevaluation of the relevance to inflammation in humans of studies of inflammation performed in rat models.  相似文献   

7.
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis.  相似文献   

8.
LTB4-induced proinflammatory responses in PMN including chemotaxis, chemokinesis, aggregation and degranulation are thought to be initiated through the binding of LTB4 to membrane receptors. To explore further the nature of this binding, we have established a receptor binding assay to investigate the structural specificity requirements for agonist binding. Human PMN plasma membrane was enriched by homogenization and discontinuous sucrose density gradient purification. [3H]-LTB4 binding to the purified membrane was dependent on the concentration of membrane protein and the time of incubation. At 20 degrees C, binding of [3H]-LTB4 to the membrane receptor was rapid, required 8 to 10 min to reach a steady-state and remained stable for up to 50 min. Equilibrium saturation binding studies showed that [3H]-LTB4 bound to high affinity (dissociation constant, Kd = 1.5 nM), and low capacity (density, Bmax = 40 pmol/mg protein) receptor sites. Competition binding studies showed that LTB4, LTB4-epimers, 20-OH-LTB4, 2-nor-LTB4, 6-trans-epi-LTB4 and 6-trans-LTB4, in decreasing order of affinity, bound to the [3H]-LTB4 receptors. The mean binding affinities (Ki) of these analogs were 2, 34, 58, 80, 1075 and 1275 nM, respectively. Thus, optimal binding to the receptors requires stereospecific 5(S), 12(R) hydroxyl groups, a cis-double bond at C-6, and a full length eicosanoid backbone. The binding affinity and rank-order potency of these analogs correlated with their intrinsic agonistic activities in inducing PMN chemotaxis. These studies have demonstrated the existence of high affinity, stereoselective and specific receptors for LTB4 in human PMN plasma membrane.  相似文献   

9.
Rabbit anti-idiotypic IgG antibodies to the combining site of a mouse monoclonal IgG2b antibody to leukotriene B4 (LTB4) cross-reacted with human polymorphonuclear (PMN) leukocyte receptors for LTB4. Anti-idiotypic IgG and Fab both inhibited the binding of [3H]LTB4, but not [3H]N-formylmethionyl-leucylphenylalanine (fMLP), to PMN leukocytes with similar concentration-effect relationships, whereas neither nonimmune rabbit IgG nor Fab had any inhibitory activity. At a concentration of anti-idiotypic IgG that inhibited by 50% the binding of [3H] LTB4 to PMN leukocytes, the antibodies preferentially recognized high affinity receptors. Anti-idiotypic IgG and Fab inhibited PMN leukocyte chemotactic responses to LTB4, but not fMLP, with concentration-effect relationships resembling those characteristic of the inhibition of binding of [3H] LTB4, without altering the LTB4-induced release of beta-glucuronidase. Chemotaxis and increases in the cytoplasmic concentration of calcium equal in magnitude to those elicited by optimal concentrations of LTB4 were attained at respective concentrations of anti-idiotypic IgG equal to and 1/25 the level required for inhibition of binding of [3H]LTB4 by approximately 50%. Thus, the anti-idiotypic antibodies bound to PMN leukocyte receptors for LTB4 with a specificity, preference for high affinity sites, and capacity to alter PMN leukocyte functions that were similar to LTB4.  相似文献   

10.
The subcellular distribution of leukotriene (LT)B4 binding and metabolizing sites was investigated in human neutrophils. Cells were disrupted by nitrogen cavitation and fractionated by Percoll density gradient centrifugation to yield cytoplasm, membranes, azurophilic granules, and specific granules. Only membrane fractions contained high affinity [3H]LTB4 binding sites. Binding of radiolabeled ligand to membranes was rapid, reversible, and saturable; it was blocked by a series of LTB4 analogues at concentrations corresponding to their respective potencies in 1) blocking [3H]LTB4 binding to whole cells and 2) stimulating neutrophil degranulation responses. In contrast, [3H]LTB4 was metabolized by fractions enriched with markers for cytoplasm plus endoplasmic reticulum. The metabolic activity was sedimented by ultracentrifugation, enhanced by NADPH, and inhibited at 4 degrees C. The cell-free system, like intact cells, metabolized [3H]LTB4 to omega-oxidized product rapidly and quantitatively at 37 degrees C but was inactive at 4 degrees C. Whole cells converted radiolabel to 20-hydroxy (approximately 30% of product) and 20-carboxy (approximately 70% of product) derivatives; the cell-free system formed principally 20-hydroxy-[3H]LTB4. These products were less bioactive than LTB4. Nevertheless, metabolism of LTB4 played little role in limiting the cells' response to the ligand: neutrophils completed degranulation and became desensitized to LTB4 within 3-5 min of exposure. Within this time frame, they oxidized less than 30% of the stimulus, and the extracellular fluid of these neutrophil suspensions was fully capable of activating fresh cells. We conclude that neutrophils transmit bioactions of LTB4 via a specific receptor integrally associated with their plasmalemma and/or endoplasmic reticulum. They inactivate the stimulus via a particulate omega-oxidase. At the level of the individual cell, receptor down-regulation, rather than ligand metabolism, appears to limit functional responses such as degranulation.  相似文献   

11.
Human recombinant granulocyte-macrophage CSF (GM-CSF) "primes" neutrophils for enhanced biologic responses to a number of secondary stimuli. Here, we examined the properties of neutrophil priming by GM-CSF and other growth factors such as human rTNF and granulocyte CSF. Although GM-CSF has a negligible direct effect on [3H]arachidonic acid release, it enhances or "primes" neutrophils for three- to fivefold increased release of [3H]arachidonic acid, induced by 1.0 microM A23187 and the chemotactants FMLP, platelet-activating factor, and leukotriene B4 (LTB4) (all 0.1 microM). The priming effects of GM-CSF were concentration- and time-dependent (maximum 100 pM, 1 h at 23 degrees C), and consistent with the determined dissociation constant of the human GM-CSF receptor. Indomethacin (10(-8) M), cycloheximide (100 micrograms/ml), and pertussis toxin (200 ng/ml, 2 h at 37 degrees C) had no effect on GM-CSF-, A23187, or platelet-activating factor-induced [3H]arachidonic acid release. The lipoxygenase inhibitor, nordihydroguaiaretic acid, however, totally abolished A23187-induced [3H]arachidonic acid release from both diluent- and GM-CSF-treated neutrophils. Consistent with this observation, we found that GM-CSF-pretreated neutrophils synthesize increased levels of LTB4 after stimulation with A23187 and chemotactic factors. GM-CSF enhances neutrophil arachidonic acid release and LTB4 synthesis, and thereby may amplify the inflammatory response to chemotactic factors and other physiologically relevant stimuli.  相似文献   

12.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

13.
Neutrophils are activated by both paracrine molecules, e.g. platelet activating factor (PAF) and leukotriene B4 (LTB4), and the bacterial hydrophobic peptide N-formyl-Met-Leu-Phe (fMLP). Several mechanisms are involved in regulation of the activation, including receptor endocytosis and ligand breakdown. The interactions between the specific granule protein neutrophil gelatinase-associated lipocalin (NGAL), expressed in human neutrophils, and fMLP, PAF and LTB4, were investigated by weak affinity chromatography. NGAL was immobilised to a silica matrix and packed in a micro-column and the retention times of retarded ligands were measured and used to calculate the strength of the interactions. The association constants for fMLP were K(ass) = 0.85 x 10(3) M(-1) at 20 degrees C and 0.77 x 10(3) M(-1) at 37 degrees C, for LTB4 were K(ass) = 4.37 x 10(3) M(-1) at 20 degrees C and 3.27 x 10(3) M(-1) at 37 degrees C and for PAF were K(ass) = 25.4 x 10(3) M(-1) at 20 degrees C and 10.5 x 10(3) M(-1) at 37 degrees C. Other methods of detecting the interactions such as gel filtration, immunoprecipitation, photoactivated ligands and fluorescence quenching proved to be insufficient. The results demonstrate the superiority of weak affinity chromatography as a method of studying the interactions of the specific granule protein NGAL.  相似文献   

14.
The incubation of HL-60 human promyelocytic leukemia cells for 7 days with 100 nM 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced differentiation into monocyte-like cells, as assessed by morphologic and biochemical characteristics. Stereospecific receptors for leukotriene B4 (LTB4) developed on the surface of the HL-60 cell-derived monocytes that had the capacity to transduce LTB4 stimulation of a transient increase in the cytosolic concentration of calcium ([Ca+2]in). HL-60 cell-derived monocytes, but not undifferentiated HL-60 cells, expressed a high affinity subset of 6400 +/- 3700 receptors per cell with a dissociation constant (Kd) of 2.3 +/- 1 nM (mean +/- SD, n = 3) and a low affinity subset of approximately 2.2 X 10(6) receptors per cell with an apparent Kd of 680 +/- 410 nM. Derivatives of LTB4 inhibited the binding of [3H]LTB4 to HL-60 cell-derived monocytes with a rank order of potency of LTB4 greater than 20-OH-LTB4 greater than 3-aminopropyl amide-LTB4, which is similar to the order for LTB4 receptors of human blood PMNL. In contrast, leukotrienes C4 and D4 and formyl-methionyl chemotactic peptides did not inhibit the binding of [3H] LTB4, which demonstrates the specificity of these receptors for isomers of 5,12-dihydroxy-eicosatetraenoic acid. LTB4 stimulated an increase in [Ca+2]in in HL-60 cell-derived monocytes which reached 50% of the maximal level at an LTB4 concentration of 0.5 nM (EC50). Preincubation of HL-60 cell-derived monocytes with 10 nM LTB4 resulted in a selective loss of high affinity receptors, as assessed by binding of [3H]LTB4, and a 200-fold increase in the EC50 for stimulation by LTB4 of increases in [Ca+2]in, without alterations in either the low affinity receptors for LTB4 or the responsiveness of [Ca+2]in to formyl-methionyl chemotactic peptides. HL-60 cells that are induced to differentiate into monocytes thus develop stereospecific receptors for LTB4 with binding and transductional characteristics similar to those of human blood PMNL.  相似文献   

15.
Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT. The mechanism of recruitment remains unclear, but it most likely involves the modulation of a post-FMLP binding step.  相似文献   

16.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

17.
[3H]Phorbol dibutyrate [( 3H]PDB) rapidly and reversibly binds to human polymorphonuclear neutrophils (PMN). Ca2+/diacylglycerol/phospholipid-dependent protein kinase C appeared to be the receptor for this binding because: a diacylglycerol, dioctanoylglycerol, competed with [3H]PDB for PMN binding sites; a blocker of protein kinase C-phospholipid interactions, sphinganine, inhibited PMN binding of [3H]PDB; and changes in cytosolic Ca2+ apparently regulated PMN binding of the label. Relevant to the last point, disrupted PMN contained 9 X 10(5) phorbol diester receptors/cell, whereas intact PMN had only 1.6 X 10(5) such receptors that were accessed by the ligand. This number fell to 1.0 X 10(5) in Ca2(+)-depleted PMN and rose to 2.5 X 10(5) in cells stimulated with the Ca2+ ionophore, ionomycin. This ionomycin effect lasted for greater than 16 min, correlated temporally with changes in cytosolic Ca2+, did not occur in Ca2(+)-depleted PMN, and was blocked by sphinganine. A second ionophore, A23187, likewise induced Ca2(+)-dependent rises in [3H]PDB binding. These results fit the standard model, wherein rises in cytosolic Ca2+ cause protein kinase C to translocate from cytosol to plasmalemma and thereby become more available to [3H]PDB. In contrast, two humoral agonists, N-formyl-Met-Leu-Phe (fMLP) and leukotriene (LT)B4, had actions that did not fit this model. They stimulated PMN to increase the availability of PDB binding sites by a sphinganine-sensitive mechanism, but their actions differed from those of ionophores. They induced biphasic (t = 15 and 60 s) increases in [3H]PDB binding while eliciting monophasic (t = 15 s), short-lived (t less than 1 min) rises in cytosolic Ca2+. In Ca2(+)-depleted PMN, moreover, fMLP and LTB4 stimulated slow (t greater than or equal to 30 s), monophasic, prominent rises in [3H]PDB binding and binding site number without appreciably altering cytosolic Ca2+. We suggest, therefore, that fMLP and LTB4 translocate protein kinase C using two sequential mechanisms. The first involves Ca2+ transients and thus produces abrupt (t = 15 s), rapidly reversing responses. The second mechanism uses an unrelated signal to effect a more slowly evolving (t = 60 s) movement of protein kinase C to plasmalemma. Hence, the standard model does not explain all instances of protein kinase C translocation, and a cytosolic Ca2(+)-independent signal contributes to the regulation of protein kinase C as well as those responses elicited by the effector enzyme.  相似文献   

18.
Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.  相似文献   

19.
The protein kinase inhibitor, 1-(5-isoquinolinesulfonyl) piperazine (C-I), inhibits superoxide release from human neutrophils (PMN) stimulated with phorbol myristate acetate or synthetic diacylglycerol, without inhibiting superoxide release from PMN stimulated with the chemoattractants C5a or N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). In this study, we investigated the effect of C-I on human PMN chemotaxis to C5a, f-Met-Leu-Phe, leukotriene B4 (LTB4), and fluoresceinated N-formyl-methionyl-leucyl-phenylalanine-lysine (f-Met-Leu-Phe-Lys-FITC). PMN, preincubated for 5 min at 37 degrees C with 0 to 200 microM C-I, were tested for their migratory responses to the chemoattractants. C-I (greater than or equal to 1 microM) significantly inhibited PMN chemotaxis to f-Met-Leu-Phe, f-Met-Leu-Phe-Lys-FITC, and C5a without affecting random migration. Maximal inhibition of chemotaxis to these attractants occurred with greater than or equal to 50 microM C-I, at which chemotaxis was inhibited by 80 to 95%. The C-I inhibition was reversible. In contrast, 200 microM C-I did not inhibit the number of PMN migrating to LTB4, although, the leading front of PMN migration to LTB4 was inhibited by C-I. C-I inhibited PMN orientation to C5a and f-Met-Leu-Phe without affecting orientation to LTB4. C-I did not inhibit the binding of radiolabeled f-Met-Leu-Phe or f-Met-Leu-Phe-Lys-FITC to PMN. These findings suggest that the chemotactic responses of PMN to f-Met-Leu-Phe and C5a involve a protein kinase-dependent reaction which is inhibited by C-I.  相似文献   

20.
Despite their physicochemical and mechanistic differences platelet activating factor (or acetylglycerylether phosphorylcholine; AGEPC) and thrombin, both platelet stimulatory agents, induce phosphoinositide turnover in platelets. We therefore investigated the stimulation of the phosphoinositide phosphodiesterase by these agents and questioned whether they evoked hydrolysis of the same or different pools of phosphoinositides. [3H]Inositol-labelled rabbit platelets were challenged with thrombin and/or AGEPC under a variety of protocols, and the phospholipase C mediated production of radioactive inositol monophosphate (IP); inositol bisphosphate (IP2) and inositol trisphosphate (IP3) was used as the parameter. AGEPC (1 X 10(-9) M) caused a transient maximum (5 to 6-fold) increase in [3H]IP3 at 5 s followed by a decrease. Thrombin (2 U/ml) elicited an increase in [3H]IP3 at a much slower rate than AGEPC; 2 fold at 5 s, 5 fold at 30 s and a maximum 6 to 8-fold at 2-5 min. Compared to AGEPC, thrombin stimulated generation of [3H]IP2 and [3H]IP were severalfold higher. When thrombin and AGEPC were added together to platelets there was no evidence for an additive increase in inositol polyphosphate levels except at earlier time points where increases were submaximal. When AGEPC was added at various time intervals after thrombin pretreatment, no additional increases in [3H]IP3 were observed over that maximally seen with thrombin or AGEPC alone. In another set of experiments, submaximal increases (about 1/4 and 1/2 of maximum) in [3H]IP3 were achieved by using selected concentrations of thrombin (0.1 U and 0.3 U, respectively) and then AGEPC (1 X 10(-9) M) was added for 5 s. Once again the increase in [3H]IP3 was close to the maximal level seen with thrombin or AGEPC individually. It is concluded that thrombin and AGEPC differentially activated phosphoinositide phosphodiesterase (phospholipase C) in rabbit platelets and that the stimulation of the phospholipase C by these two stimuli causes IP3 production via hydrolysis of a common pool of phosphatidylinositol 4,5-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号