首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.

Methodology/Principal Findings

In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.

Conclusions/Significance

Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons.  相似文献   

4.
5.
Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104bris) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.  相似文献   

6.
Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.  相似文献   

7.
8.
L. Avery  C. I. Bargmann    H. R. Horvitz 《Genetics》1993,134(2):455-464
We have devised a method for selecting Caenorhabditis elegans mutants that execute feeding motions in the absence of food. One mutation isolated in this way is an allele of the gene unc-31, first discovered by S. Brenner in 1974, because of its effects on locomotion. We find that strong unc-31 mutations cause defects in four functions controlled by the nervous system. Mutant worms are lethargic, feed constitutively, are defective in egg-laying and produce dauer larvae that fail to recover. We discuss two extreme models to explain this pleiotropy: either unc-31 affects one or a few neurons that coordinately control several different functions, or it affects many neurons that independently control different functions.  相似文献   

9.
Mutations in the Caenorhabditis elegans gene mec-8 were previously shown to cause defects in mechanosensation and in the structure and dye filling of certain chemosensory neurons. Using noncomplementation screens, we have identified eight new mec-8 alleles and a deficiency that uncovers the locus. Strong mec-8 mutants exhibit an incompletely penetrant cold-sensitive embryonic and larval arrest, which we have correlated with defects in the attachment of body muscle to the hypodermis and cuticle. Mutations in mec-8 strongly enhance the mutant phenotype of unc-52(viable) mutations; double mutants exhibit an unconditional arrest and paralysis at the twofold stage of embryonic elongation, a phenotype characteristic of lethal alleles of unc-52, a gene previously shown to encode a homolog of the core protein of heparan sulfate proteogylcan, found in basement membrane, and to be involved in the anchorage of myofilament lattice to the muscle cell membrane. We have identified and characterized four extragenic recessive suppressors of a mec-8; unc-52(viable) synthetic lethality. The suppressors, which define the genes smu-1 and smu-2, can weakly suppress all mec-8 mutant phenes. They also suppress the muscular dystrophy conferred by an unc-52(viable) mutation.  相似文献   

10.
T. A. Starich  R. K. Herman    J. E. Shaw 《Genetics》1993,133(3):527-541
Mutations in the Caenorhabditis elegans gene unc-7 confer an uncoordinated phenotype. Wild-type animals trace smooth, sinuous waves as they move; unc-7 mutants make irregular bends or kinks along their bodies, particularly when they move forward. The unc-7 locus has also been implicated in the nematode's response to volatile anesthetics. We have cloned unc-7 by transposon tagging: an unc-7 mutation was correlated with the insertion of the transposon Tc1, and reversion of the mutant phenotype was correlated with loss of the Tc1 element. We have physically mapped the region flanking the sites of Tc1 insertion and identified DNA rearrangements corresponding to eight additional unc-7 alleles. Northern analysis indicates that a 2.7-kb unc-7 message is present in all developmental stages but is most abundant in L1-L3 larvae. The 5' end of the message contains a trans-spliced leader SL1. An 18-kb intron is located upstream of the predicted translational start site of the gene, and DNA breakpoints of four gamma-ray-induced alleles were located within this intron. We determined the sequence of a cDNA corresponding to the unc-7 message. The message may encode a 60-kd protein whose amino acid sequence is unrelated to any other available protein sequence; a transmembrane location for the unc-7 protein is predicted. We predict from our analysis of unc-7 genetic mosaics that the unc-7 gene product is not required in muscle cells for wild-type coordination but is probably required in motor neurons (although a hypodermal role has not been excluded). We speculate that unc-7 may be involved in the function of neuronal ion channels.  相似文献   

11.
Hawasli AH  Saifee O  Liu C  Nonet ML  Crowder CM 《Genetics》2004,168(2):831-843
The molecular mechanisms whereby volatile general anesthetics (VAs) disrupt behavior remain undefined. In Caenorhabditis elegans mutations in the gene unc-64, which encodes the presynaptic protein syntaxin 1A, produce large allele-specific differences in VA sensitivity. UNC-64 syntaxin normally functions to mediate fusion of neurotransmitter vesicles with the presynaptic membrane. The precise role of syntaxin in the VA mechanism is as yet unclear, but a variety of results suggests that a protein interacting with syntaxin to regulate neurotransmitter release is essential for VA action in C. elegans. To identify additional proteins that function with syntaxin to control neurotransmitter release and VA action, we screened for suppressors of the phenotypes produced by unc-64 reduction of function. Loss-of-function mutations in slo-1, which encodes a Ca(2+)-activated K+ channel, and in unc-43, which encodes CaM-kinase II, and a gain-of-function mutation in egl-30, which encodes Gqalpha, were isolated as syntaxin suppressors. The slo-1 and egl-30 mutations conferred resistance to VAs, but unc-43 mutations did not. The effects of slo-1 and egl-30 on VA sensitivity can be explained by their actions upstream or parallel to syntaxin to increase the level of excitatory neurotransmitter release. These results strengthen the link between transmitter release and VA action.  相似文献   

12.

Background  

Unc-45 is a myosin chaperone and a Hsp90 co-chaperone that plays a key role in muscle development. Genetic and biochemical studies in C. elegans have demonstrated that Unc-45 facilitates the process of myosin folding and assembly in body wall muscles. Loss or overexpression of Unc-45 in C. elegans results in defective myofibril organization. In the zebrafish Danio rerio, unc-45b, a homolog of C. elegans unc-45, is expressed in both skeletal and cardiac muscles. Earlier studies indicate that mutation or knockdown of unc-45b expression in zebrafish results in a phenotype characterized by a loss of both thick and thin filament organization in skeletal and cardiac muscle. The effects of unc-45b knockdown on other sarcomeric structures and the phenotype of Unc-45b overexpression, however, are poorly understood in vertebrates.  相似文献   

13.
A screen for genes required in Drosophila eye development identified an UNC-104/Kif1 related kinesin-3 microtubule motor. Analysis of mutants suggested that Drosophila Unc-104 has neuronal functions that are distinct from those of the classic anterograde axonal motor, kinesin-1. In particular, unc-104 mutations did not cause the distal paralysis and focal axonal swellings characteristic of kinesin-1 (Khc) mutations. However, like Khc mutations, unc-104 mutations caused motoneuron terminal atrophy. The distributions and transport behaviors of green fluorescent protein-tagged organelles in motor axons indicate that Unc-104 is a major contributor to the anterograde fast transport of neuropeptide-filled vesicles, that it also contributes to anterograde transport of synaptotagmin-bearing vesicles, and that it contributes little or nothing to anterograde transport of mitochondria, which are transported primarily by Khc. Remarkably, unc-104 mutations inhibited retrograde runs by neurosecretory vesicles but not by the other two organelles. This suggests that Unc-104, a member of an anterograde kinesin subfamily, contributes to an organelle-specific dynein-driven retrograde transport mechanism.  相似文献   

14.
W. Shreffler  T. Magardino  K. Shekdar    E. Wolinsky 《Genetics》1995,139(3):1261-1272
Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels.  相似文献   

15.
M. Maduro  D. Pilgrim 《Genetics》1995,141(3):977-988
A spontaneous mutation affecting locomotion of the nematode Caenorhabditis elegans has been mapped to a new gene, unc-119. Phenotypic characterization of the mutants suggests the defect does not lie in the musculature and that the animals also have defects in feeding behavior and chemosensation. unc-119 has been physically mapped relative to a previously identified chromosomal break in linkage group III, and DNA clones covering the region can rescue the mutant phenotype in transgenic animals. Three more alleles at the locus, with identical phenotypes, have been induced and characterized, all of which are putative null alleles. The predicted UNC-119 protein has no significant similarity to other known proteins. Expression of an unc-119/lacZ fusion in transgenic animals is seen in many neurons, suggesting that the unc-119 mutant phenotype is due to a defect in the nervous system.  相似文献   

16.
The Caenorhabditis elegans POU protein UNC-86 specifies the HSN motor neurons, which are required for egg-laying, and six mechanosensory neurons. To investigate how UNC-86 controls neuronal specification, we characterized two unc-86 mutants that do not respond to touch but show wild-type egg-laying behavior. Residues P145 and L195, which are altered by these mutations, are located in the POU-specific domain and abolish the physical interaction of UNC-86 with the LIM homeodomain protein, MEC-3. This results in a failure to maintain mec-3 expression and in loss of expression of the mechanosensory neuron-specific gene, mec-2. unc-86-dependent expression of genes in other neurons is not impaired. We conclude that distinct residues in the POU domain of UNC-86 are involved in modulating UNC-86 activity during its specification of different neurons. A structural model of the UNC-86 POU domain, including base pairs and amino acid residues required for MEC-3 interaction, revealed that P145 and L195 are part of a hydrophobic pocket which is similar to the OCA-B-binding domain of the mammalian POU protein, Oct-1.  相似文献   

17.
The Caenorhabditis elegans unc-60 gene encodes two functionally distinct isoforms of ADF/cofilin that are implicated in myofibril assembly. Here, we show that one of the gene products, UNC-60B, is specifically required for proper assembly of actin into myofibrils. We found that all homozygous viable unc-60 mutations resided in the unc-60B coding region, indicating that UNC-60B is responsible for the Unc-60 phenotype. Wild-type UNC-60B had F-actin binding, partial actin depolymerizing, and weak F-actin severing activities in vitro. However, mutations in UNC-60B caused various alterations in these activities. Three missense mutations resulted in weaker F-actin binding and actin depolymerizing activities and complete loss of severing activity. The r398 mutation truncated three residues from the COOH terminus and resulted in the loss of severing activity and greater actin depolymerizing activity. The s1307 mutation in a putative actin-binding helix caused greater activity in actin-depolymerizing and severing. Using a specific antibody for UNC-60B, we found varying protein levels of UNC-60B in mutant animals, and that UNC-60B was expressed in embryonic muscles. Regardless of these various molecular phenotypes, actin was not properly assembled into embryonic myofibrils in all unc-60 mutants to similar extents. We conclude that precise control of actin filament dynamics by UNC-60B is required for proper integration of actin into myofibrils.  相似文献   

18.
Genetic Organization of the Unc-60 Region in Caenorhabditis Elegans   总被引:2,自引:1,他引:1  
We have investigated the chromosomal region around unc-60 V, a gene affecting muscle structure, in the nematode Caenorhabditis elegans. The region studied covers 3 map units and lies at the left end of linkage group (LG) V. Compared to the region around dpy-11 (at the center of LGV), the unc-60 region has relatively few visible genes per map unit. We found the same to be true for essential genes. By screening simultaneously for recessive lethals closely linked to either dpy-11 or unc-60, we recovered ethyl methanesulfonate-induced mutations in 10 essential genes near dpy-11 but in only two genes near unc-60. Four deficiency breakpoints were mapped to the unc-60 region. Using recombination and deficiency mapping we established the following gene order: let-336, unc-34, let-326, unc-60, emb-29, let-426. Regarding unc-60 itself, we compared the effect of ten alleles (including five isolated during this study) on hermaphrodite mobility and fecundity. We used intragenic mapping to position eight of these alleles. The results show that these alleles are not distributed uniformly within the gene, but map to two groups approximately 0.012 map unit apart.  相似文献   

19.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

20.
The unc-52 gene in Caenorhabditis elegans produces several large proteins that function in the basement membrane underlying muscle cells. Mutations in this gene result in defects in myofilament assembly and in the attachment of the myofilament lattice to the muscle cell membrane. The st549 and ut111 alleles of unc-52 produce a lethal (Pat) terminal phenotype whereas the e444, e669, e998, e1012 and e1421 mutations result in viable, paralyzed animals. We have identified the sequence alterations responsible for these mutant phenotypes. The st549 allele has a premature stop codon in exon 7 that should result in the complete elimination of unc-52 gene function, and the ut111 allele has a Tc1 transposon inserted into the second exon of the gene. The five remaining mutations are clustered in a small interval containing three adjacent, alternatively spliced exons (16, 17 and 18). These mutations affect some, but not all of the unc-52-encoded proteins. Thirteen intragenic revertants of the e669, e998, e1012 and e1421 alleles have also been sequenced. The majority of these carry the original mutation plus a G to A transition in the conserved splice acceptor site of the affected exon. This result suggests that reversion of the mutant phenotype in these strains may be the result of exon-skipping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号