首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identified a new gene that is interrupted by T-DNA in an Arabidopsis embryo mutant called raspberry3. raspberry3 has "raspberry-like" cellular protuberances with an enlarged suspensor characteristic of other raspberry embryo mutants, and is arrested morphologically at the globular stage of embryo development. The predicted RASPBERRY3 protein has domains found in proteins present in prokaryotes and algae chloroplasts. Computer prediction analysis suggests that the RASPBERRY3protein may be localized in the chloroplast. Complementation analysis supports the possibility that the RASPBERRY3 protein may be involved in chloroplast development. Our experiments demonstrate the important role of the chloroplast, directly or indirectly, in embryo morphogenesis and development.  相似文献   

2.
The suspensor is a specialized basal structure that differentiates early in plant embryogenesis to support development of the embryo proper. Suspensor differentiation in Arabidopsis is maintained in part by the TWIN1 (TWN1) gene, which suppresses embryogenic development in suspensor cells: twn1 mutants produce supernumerary embryos via suspensor transformation. To better understand mechanisms of suspensor development and further investigate the function of TWN1, we have characterized late-embryo and post-embryonic development in the twn1 mutant, using seedling culture, microscopy, and genetics. We report here that the twn1 mutation disrupts cotyledon number, arrangement, and morphology and occasionally causes partial conversion of cotyledons into leaves. These defects are not a consequence of suspensor transformation. Thus, in addition to its basal role in suspensor differentiation, TWN1 influences apical pattern and morphology in the embryo proper. To determine whether other genes can similarly affect both suspensor and cotyledon development, we looked for twinning in Arabidopsis mutants previously identified by their abnormal cotyledon phenotypes. One such mutant, amp1, produced a low frequency of twin embryos by suspensor transformation. Our results suggest that mechanisms that maintain suspensor identity also function later in development to influence organ formation at the embryonic shoot apex. We propose that TWN1 functions in cell communication pathways that convey local positional information in both the apical and basal regions of the Arabidopsis embryo.  相似文献   

3.
Plant growth and development rely on sugar transport between source and sink cells and between different organelles. The plastid-localized sugar transporter GLUCOSE-6-PHOSPHATE TRANSLOCATER1 (GPT1) is an essential gene in Arabidopsis (Arabidopsis thaliana). Using a partially rescued gpt1 mutant and cell-specific RNAi suppression of GPT1, we demonstrated that GPT1 is essential to the function of the embryo suspensor and the development of the embryo. GPT1 showed a dynamic expression/accumulation pattern during embryogenesis. Inhibition of GPT1 accumulation via RNAi using a suspensor-specific promoter resulted in embryos and seedlings with defects similar to auxin mutants. Loss of function of GPT1 in the suspensor also led to abnormal/ectopic cell division in the lower part of the suspensor, which gave rise to an ectopic embryo, resulting in twin embryos in some seeds. Furthermore, loss of function of GPT1 resulted in vacuolar localization of PIN-FORMED1 (PIN1) and altered DR5 auxin activity. Proper localization of PIN1 on the plasma membrane is essential to polar auxin transport and distribution, a key determinant of pattern formation during embryogenesis. Our findings suggest that the function of GPT1 in the embryo suspensor is linked to sugar and/or hormone distribution between the embryo proper and the maternal tissues, and is important for maintenance of suspensor identity and function during embryogenesis.

Specific expression of a sugar transporter that localizes to the plastids of cells in the embryo suspensor affects auxin activity and embryo development.  相似文献   

4.
Little is known about regulatory factors that act during the earliest stages of plant embryogenesis. The MADS domain protein AGL15 (for AGAMOUS-like) is expressed preferentially during embryogenesis and accumulates during early seed development in monocotyledonous and dicotyledonous flowering plants. AGL15-specific antibodies and immunohistochemistry were used to demonstrate that AGL15 accumulates before fertilization in the cytoplasm in the cells of the egg apparatus and moves into the nucleus during early stages of development in the suspensor, embryo, and endosperms. Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis. AGL15 is associated with the chromosomes during mitosis, and gel mobility shift assays were used to demonstrate that AGL15 binds DNA in a sequence-specific manner. To assess whether AGL15 is likely to play a role in specifying the seed or embryonic phase of development, AGL15 accumulation was examined in Arabidopsis mutants that prematurely exit embryogenesis. lec1-2 mutants show an embryo-specific loss of AGL15 at the transition stage, suggesting that AGL15 interacts with regulators in the leafy cotyledons pathway.  相似文献   

5.
6.
The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.  相似文献   

7.
Jenik PD  Jurkuta RE  Barton MK 《The Plant cell》2005,17(12):3362-3377
Pattern formation and morphogenesis require coordination of cell division rates and orientations with developmental signals that specify cell fate. A viable mutation in the TILTED1 locus, which encodes the catalytic subunit of DNA polymerase epsilon of Arabidopsis thaliana, causes a lengthening of the cell cycle by approximately 35% throughout embryo development and alters cell type patterning of the hypophyseal lineage in the root, leading to a displacement of the root pole from its normal position on top of the suspensor. Treatment of preglobular and early globular stages, but not later stage, embryos with the DNA polymerase inhibitor aphidicolin leads to a similar phenotype. The results uncover an interaction between the cell cycle and the processes that determine cell fate during plant embryogenesis.  相似文献   

8.
Developing Arabidopsis (Arabidopsis thaliana) seeds and embryos represent a complex set of cell layers and tissues that mediate the transport and partitioning of carbohydrates, amino acids, hormones, and signaling molecules from the terminal end of the funicular phloem to and between these seed tissues and eventually to the growing embryo. This article provides a detailed analysis of the symplastic domains and the cell-to-cell connectivity from the end of the funiculus to the embryo, and within the embryo during its maturation. The cell-to-cell movement of the green fluorescent protein or of mobile and nonmobile green fluorescent protein fusions was monitored in seeds and embryos of plants expressing the corresponding cDNAs under the control of various promoters (SUC2, SUC3, TT12, and GL2) shown to be active in defined seed or embryo cell layers (SUC3, TT12, and GL2) or only outside the developing Arabidopsis seed (AtSUC2). Cell-to-cell movement was also analyzed with the low-molecular-weight fluorescent dye 8-hydroxypyrene-1,3,6-trisulfonate. The analyses presented identify a phloem-unloading domain at the end of the funicular phloem, characterize the entire outer integument as a symplastic extension of the phloem, and describe the inner integument and the globular stage embryo plus the suspensor as symplastic domains. The results also show that, at the time of hypophysis specification, the symplastic connectivity between suspensor and embryo is reduced or interrupted and that the embryo develops from a single symplast (globular and heart stage) to a mature embryo with new symplastic domains.  相似文献   

9.
The process that leads to embryo formation appears to follow a defined pattern, whose sequential developmental steps—under strict genetic control—can be analysed through the study of mutants affecting embryogenesis. We present the analysis of four embryo-specific (emb) mutants of maize, characterised by abnormal development not overcoming the proembryo or early transition stage, that define three separate genes on the basis of their chromosomal location and complementation pattern. A common feature emerging from histological analysis is that suppression of morphogenesis is accompanied by an uncontrolled pattern of cell division. The block in embryo development is associated with abnormal suspensor proliferation, possibly due to the absence of a signal elaborated by the embryo proper and required for suspensor cell identity maintenance. Mutant endosperm morphogenesis is not impaired, as shown by the formation of the expected domains, i.e. aleurone, starchy endosperm, embryo-surrounding region and basal endosperm transfer layer. The program of cell death appears impaired in the mutants, as expected if this process is essential in determining the shape and morphology of the developing organs. An unexpected result is obtained when mutant embryo rescue is attempted. Immature embryos transferred to a basal medium germinated, yielding small but otherwise normal seedlings, an observation not consistent with the histological evidence of a complete absence of morphogenetic potential. The analysis of emb mutants appears a promising tool to elucidate crucial points of embryo development such as the coupling of cell division with morphogenesis, cell-to-cell interactions, the relationship between embryo and endosperm development, and the interaction between embryo proper and suspensor.  相似文献   

10.
Coombs  J.  Baldry  C. W. 《Planta》1975,127(2):153-162
Summary Gibberellins and auxins were extracted from embryos and suspensors of Phaseolus coccineus L. at two stages of development: A) heart-shaped embryo and B) cotyledonary embryo with suspensor in the initial stage of degeneration. The time interval between the two stages was 5–6 days.In both embryos and suspensors, gibberellin (GA)-like activity was found in three fractions: F-1 (ethyl acetate fraction at pH 8.0), F-2 (free GAs) and F-3 (bound GAs). At stage A, the total GA activity in the suspensor was about 30 times greater than in the embryo and the bound GAs contributed by about 90% to the total GA content. A dramatic decrease in level of bound GA-like substances was found in suspensors at stage B, when the level of total GAs in the embryo had increased to 10 times that at stage A. This might suggest a transport of GAs from the suspensor to the embryo. In both embryo and suspensor, qualitative changes in GAs with shift in activity of the fractions tested occurred at the two developmental stages.The methanolic extracts of stage A suspensors showed two inhibitors, one much more active than the other, and two large peaks of growth promoting activity at Rf 0.4–0.7; in stage A embryos, the general activity of the extracts was lower and the promoting effect was spread over Rf 0.3–0.9.The present results seem to support the view that the suspensor plays a role in embryogenesis by acting as a site of synthesis of growth regulators needed by the embryo.Abbreviations F-1 ethyl acetate fraction at pH 8.0 - F-2 free gibberellins - F-3 bound gibberellins - GA gibberellic acid - Stage A heart-shaped embryo - stage B cotyledonary embryo with suspensor in the initial stage of degeneration  相似文献   

11.
The specification of epidermal (L1) identity occurs early during plant embryogenesis. Here we show that, in Arabidopsis, AtDEK1 encodes a key component of the embryonic L1 cell-layer specification pathway. Loss of AtDEK1 function leads to early embryo lethality characterized by a severe loss of cell organization in the embryo proper and abnormal cell divisions within the suspensor. Markers for L1 identity, ACR4 and ATML1, are not expressed in homozygous mutant embryos. In order to clarify the function of AtDEK1 further, an RNAi knockdown approach was used. This allowed embryos to partially complete embryogenesis before losing AtDEK1 activity. Resulting seedlings showed a specific loss of epidermal cell identity within large portions of the cotyledons. In addition, meristem structure and function was systematically either reduced or entirely lost. AtDEK1 expression is not restricted to the L1 epidermal cell layer at any stage in development. This is consistent with AtDEK1 playing an upstream role in the continuous generation or interpretation of positional information required for epidermal specification. Our results not only identify a specific role for AtDEK1 during embryogenesis, but underline the potential key importance of L1 specification at the globular stage for subsequent progression through embryogenesis.  相似文献   

12.
Six different mutations with defects in immature seed development have been identified during screening of a T-DNA collection of Arabidopsis thaliana. The mutations were confirmed to be monogenic and recessive-lethal by genetic analysis. Mutant embryos were blocked in certain steps in the process necessary for embryo viability and development, and therefore they belong to the embryo-lethal class of mutants. The genetic and morphological studies of T-DNA mutations affecting embryo development are presented. The youngest embryos with a defect were observed at the globular stage in the VIII-64 mutation. Externally located cells, precursor of the protoderm, were characterised by abnormal cell division. VIII-41 mutation with a defect at the late globular stage was arrested at the globular-heart stage transition. VIII-111 mutation showed defect at heart stage of embryogenesis with atypical development of cotyledon primordia. The defect was associated with abnormal pattern of cell division constituting the precursor of the shoot apical meristem. In VIII-82 mutation defect in torpedo stage with asymmetric cotyledons was observed. Cotyledon stage of embryos and chlorophyll defect were observed in VIII-75 mutant. Abnormal suspensor consisting of two columns of cells was observed in 280-4-4 mutation. Newly identified embryo-lethals can serve as starting material for more detailed genetic and molecular studies.  相似文献   

13.
Seed morphogenesis consists of embryogenesis and the development of maternal tissues such as the inner and outer integuments, both of which give rise to seed coats. We show that expression of chimeric repressors derived from NAC-REGULATED SEED MORPHOLOGY1 and -2 (NARS1 and NARS2, also known as NAC2 and NAM, respectively) caused aberrant seed shapes in Arabidopsis thaliana. Double knockout mutant nars1 nars2 exhibited abnormally shaped seeds; moreover, neither nars1 nor nars2 produced abnormal seeds, indicating that NARS1 and NARS2 redundantly regulate seed morphogenesis. Degeneration of the integuments in nars1 nars2 was markedly delayed, while that of the wild type occurred around the torpedo-shaped embryo stage. Additionally, nars1 nars2 showed a defect in embryogenesis: some nars1 nars2 embryos were developmentally arrested at the torpedo-shaped embryo stage. Unexpectedly, however, neither NARS1 nor NARS2 was expressed in the embryo at this stage, although they were found to be expressed in the outer integument. Wild-type pistils pollinated with nars1 nars2 pollen generated normal seeds, while the reverse crossing generated abnormal seeds. Taken together, these results indicate that NARS1 and NARS2 regulate embryogenesis by regulating the development and degeneration of ovule integuments. Our findings suggest that there is an intertissue communication between the embryo and the maternal integument.  相似文献   

14.
Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+?plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.  相似文献   

15.
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport.  相似文献   

16.
17.
The embryo-defective (emb) mutants of Arabidopsis constitute a large and diverse group of mutants disrupted in a broad range of embryonic processes, including morphogonesis, cell differentiation, and maturation programs. This report describes a subset of these mutants, the late embryo defectives, which develop beyond the globular stage of embryogenesis but fail to complete normal morphogenesis. A representative sample of 12 late mutants was chosen for this study, patterns of morphogenesis were characterized, the germination potential of mutant seeds was investigated, and additional mutant alleles within the collection were identified. Morphological defects in mutant embryos became apparent during the heart stage of development, when embryos normally begin the rapid cell division and expansion required for the completion of morphogenesis. Despite their morphological abnormalities, mutant embryos often germinated from dry seed, demonstrating that genetic programs required for the establishment of desiccation tolerance remained intact. Mutant seedlings displayed a wide range of developmental abnormalities, including altered morphology, lack of pigmentation, dwarfism, and disorganized vegetative growth. One late mutant was found to be allelic to an early embryo defective that arrests at the globular stage. These results suggest that a number of late EMB genes encode basic cellular and metabolic functions needed for cell division, enlargement, and embryonic growth. The rapid growth and metabolic changes that occur at the heart stage may present a barrier to normal development in the late mutants, resulting in altered embryo morphology and other developmental defects. It is proposed that many Arabidopsis mutants with abnormal embryo and seedling morphology are not defective in the regulation of pattern formation or morphogenesis, but rather in fundamental physiological and cellular processes required for the completion of normal growth and development. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
We used in situ hybridization to investigate Kunitz trypsin inhibitor gene expression programs at the cell level in soybean embryos and in transformed tobacco seeds. The major Kunitz trypsin inhibitor mRNA, designated as KTi3, is first detectable in a specific globular stage embryo region, and then becomes localized within the axis of heart, cotyledon, and maturation stage embryos. By contrast, a related Kunitz trypsin inhibitor mRNA class, designated as KTi1/2, is not detectable during early embryogenesis. Nor is the KTi1/2 mRNA detectable in the axis at later developmental stages. Outer perimeter cells of each cotyledon accumulate both KTi1/2 and KTi3 mRNAs early in maturation. These mRNAs accumulate progressively from the outside to inside of each cotyledon in a "wave-like" pattern as embryogenesis proceeds. A similar KTi3 mRNA localization pattern is observed in soybean somatic embryos and in transformed tobacco seeds. An unrelated mRNA, encoding [beta]-conglycinin storage protein, also accumulates in a wave-like pattern during soybean embryogenesis. Our results indicate that cell-specific differences in seed protein gene expression programs are established early in development, and that seed protein mRNAs accumulate in a precise cellular pattern during seed maturation. We also show that seed protein gene expression patterns are conserved at the cell level in embryos of distantly related plants, and that these patterns are established in the absence of non-embryonic tissues.  相似文献   

20.
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies, somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号