首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reversal of the direction (turnaround) of orthograde axonal transport of dopamine-beta-hydroxylase (DBH) activity was studied at a ligature placed on rat sciatic nerve. DBH was allowed to accumulate at a ligature in vivo for selected intervals, at which time a second ligature was placed proximal to the first and turnaround transport measured just distal to the second tie after incubation in vivo or in vitro. Orthograde accumulation of DBH activity proximal to a ligature peaked at 2 days, and then rapidly decreased as a result of turnaround transport and injury-induced reduction of orthograde transport. Destruction of postganglionic sympathetic axon terminals in vivo with 6 hydroxydopamine resulted in a decrease in orthograde transport similar to that seen after axotomy and turnaround at or proximal to the site of chemical injury. Turnaround transport of DBH in vitro was blocked by incubation in the cold and in the presence of NaCN and vinblastine. Orthograde transport of DBH appeared to reverse direction within a few millimeters of a ligature.  相似文献   

2.
FAST AXOPLASMIC TRANSPORT OF ACETYLCHOLINESTERASE IN MAMMALIAN NERVE FIBRES   总被引:9,自引:4,他引:5  
Abstract— Acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) is carried down mammalian nerve fibres by the fast axoplasmic transport system. This conclusion was derived from experiments involving the ligation of cat sciatic nerves at two sites placed 83.5 mm apart. The enzyme accumulated in segments of nerve proximal to the upper ligation in a linear fashion over a period of at least 20 h. At approximately 5 h the accumulation of enzyme ceased in the nerve segment proximal to the distal ligation within the isolated length of nerve, an observation indicating that the portion of AChE free to move within the isolated nerve had been depleted during this period of time. The freely moving fraction of AChE was estimated to be 15% of the total enzyme activity present in the nerve (10% in the proximo-distal direction and 5% in the retrograde direction). The rate of AChE downflow (as estimated from the intercept of the curve plotting accumulation with the line denoting when depletion started) was 431 mm/day within a 95% confidence interval of 357–543 mm/day. In view of the variability, our results demonstrated that AChE was being carried by the fast axoplasmic transport system, which in earlier studies was estimated to have a characteristic rate close to 410 mm/day.
An accumulation of AChE was also found on the distal side of the ligations that represented a movement of AChE in the distal-proximal direction in the fibres. This retrograde transport was smaller in amount (about one-half) than the proximo-distal rate of transport, or close to 220 mm/day. The rate of AChE transport was discussed in relation to the 'transport filament' hypothesis of fast axoplasmic transport.  相似文献   

3.
: Reversal of direction (turnaround) of axonal transport of particle specific enzyme activities was studied at a ligature placed on rat sciatic nerve. In the principal experiment, the ligature remained on the nerve in vivo several hours, allowing enzyme activities (acetylcholinesterase, acid phosphatase, and monoamine oxidase) to accumulate immediately proximal to the tie. The nerve was then tied a second time, proximal to the first tie, and incubated in vitro for several more hours. Accumulation of enzyme activities just distal to the second tie was measured. This second accumulation, of activities traveling in the retrograde direction, was shown to be the result of turnaround in several ways. (1) The increase in activity distal to the second tie was equal to the decrease in activity proximal to the first. (2) The increase in enzyme activities distal to the second tie was greatly reduced when the accumulation proximal to the first tie was trapped by placing a third tie between the first and second ties. (3) It was shown that the activity that accumulated distal to the second tie could not have been in retrograde motion at the time of the first tie. (4) Accumulation distal to the second tie was not a function of the length of nerve segment included between the two ties. In contrast to the consistent occurrence of turnaround of orthograde flow, turnaround of retrograde flow could not be demonstrated. Turnaround transport was blocked by incubation in the cold and in the presence of NaCN or vinblastine. The turnaround process operated on all three enzymes studied, suggesting that it operates on lysosomes and mitochondria, as well as on the endoplasmic reticulum-like material bearing acetylcholinesterase. Evidence for the participation of the transport process in the renewal of AChE in the distal portions of the axon was obtained in experiments using diisopropylphosphorofluoridate and cycloheximide.  相似文献   

4.
Abstract— The axoplasmic transport rate and distribution of acetylcholinesterase (AChe, EC 3.1.1.7) was studied in the sciatic nerves of normal rats and those with a neuropathy due to acrylamide, by measuring the accumulation of the enzyme proximal to single and double ligatures. The single ligature experiments showed that the apparent transport rate of AChE was decreased in acrylamide neuropathy. The double ligature experiments indicated that only 8.1% of AChE was mobile in normal rat sciatic nerve. The mobility of the enzyme in acrylamide-treated rat sciatic nerves was altered to 11.8%. The absolute transport rate of AChE in normal rat sciatic nerve was 567 mm/24 h, and in acrylamide neuropathy it was decreased to 287 mm/24 h.
The amount of AChE activity transported in normal rat sciatic nerve was 2.64 μmol/24 h. The rats with acrylamide neuropathy showed a decrease in the amount of AChE activity moving in the orthograde direction (2.03 μmol/24 h).
The colchicine-binding properties of tubulin protein from sciatic nerves of normal and acrylamide-treated rats were studied. In rats with acrylamide neuropathy, a marked decrease of 75% in tubulin-colchicine binding was observed.  相似文献   

5.
Abstract— The redistribution of rapidly migrating [3H]leucine-labelled proteins and [3H]fucose-labelled glycoproteins was studied in ligated regenerating hypoglossal and vagus nerves of the rabbit. When regenerating and contralateral hypoglossal nerves were ligated 16 h after labelling of the nerve cell bodies, rapidly migrating proteins and glycoproteins accumulated distal to the ligatures indicating a rapid retrograde transport from the peripheral parts of the nerves within 6 h. The retrograde accumulation of both proteins and glycoproteins was greater on the regenerating side than on the contralateral side at both 1 and 5 weeks after a nerve crush. Labelled proteins and glycoproteins also accumulated proximal to the ligatures, indicating a delayed rapid anterograde phase of axonal transport. The accumulation of this phase was also greater on the regenerating side 1 week after a nerve crush for both labelled proteins and glycoproteins. One week after a crush of the cervical vagus nerve, rapidly migrating proteins and glycoproteins redistributed between he crush zone and a proximal ligature applied 16 h after labelling of the nerve cell bodies. A retrograde accumulation occurred distal to the ligature within 6 h, indicating a rapid retrograde transport from the crush zone.  相似文献   

6.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

7.
—The redistribution of rapidly migrating [3H]leucine-labelled proteins was studied using double ligatures applied to the vagus nerve and single ligatures, applied to the hypoglossal nerves. Rapidly migrating proteins accumulating for 16 h proximal to a distal ligature of the cervical vagus redistributed to give a retrograde accumulation distal to a second ligature. Within 6 h a substantial redistribution occurred indicating a rapid retrograde transport. After 21 h there was a further accumulation with 70 per cent of the labelled material accumulating at the distal end of the isolated nerve segment and 16 per cent accumulating at the proximal end. It was shown that about a half of the retrograde accumulation was dependent on the distal accumulation zone. Rapidly migrating proteins accumulated distal to a ligature applied to the hypoglossal nerve 16 h after labelling of the nerve cell bodies indicating that a rapid retrograde transport of labelled macromolecules occurs from the peripheral parts of the nerve in the tongue. Labelled proteins accumulated proximal to ligatures and transections of both the hypoglossal and vagus nerve when applied 16 h after labelling of the nerve cell bodies, indicating the presence of axonal proteins, migrating at a rate of transport intermediate to that of rapidly and slowly migrating proteins.  相似文献   

8.
Abstract— Orthograde and retrograde axonal transport were studied in rat sciatic nerves which had been crushed and either allowed to regenerate, or prevented from doing so by tightly ligaturing the nerve. At various intervals after crushing the nerve. L-[3H]leucine was injected into the lumbosacral spinal cord. and the subsequent transport of labeled protein in motoneuron axons was quantitated by measuring the accumulation of labeled protein at collection crushes made proximal to the original nerve crush. Accumulations proximal to the collection crushes (orthograde transport) 9-11 h after injection (p.i.). decreased within I day of nerve injury, but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained depressed for at least 30 days. Accumulations distal to the collection crushes (retrograde transport) 9-11 h pi. increased over the first 5 days following injury but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained elevated. The time-course of retrograde transport of newly-synthesized protein also returned to normal during nerve regeneration. It is suggested that changes in retrograde transport during regeneration may inform the neuron cell body of the progress of regeneration and elicit appropriate metabolic responses. among which may be the changes in orthograde transport that follow axotomy.  相似文献   

9.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

10.
—We studied the axoplasmic transport of choline acetyltransferase (CAT) activity in sciatic nerves of normal mice of various ages. For at least 3 days after unilateral ligation of sciatic nerves of 6 and 30-week-old mice, the CAT activity in the ligated nerve increased as a linear function of time and the increase was confined to the 3 mm length of nerve immediately proximal to the ligature. The rate of increase of CAT activity in the ligated nerves of the 30-week-old mice was only 45 ± 6% that of the 6-week-old mice, whereas the CAT activity of non-ligated sciatic nerves of the older mice was 87 ± 6% more than that of the younger mice (n = 18, P < 0·001). The average velocity of axoplasmic transport of CAT activity was five times greater in the younger mice (1·5 ± 0·2 mm/day vs 0·3 ± 0·1 mm/day, n = 6, P < 0·01). Even greater differences were observed between still younger and older animals: the av velocity of axoplasmic transport of 2-week-old mice (3·5 ± 0·2 mm/day) was 17·5 times greater than that of 36-week-old mice (0·2 ± 0·1 mm/day). We also studied the axoplasmic transport of CAT activity in 6-week-old mice after unilateral section of the sciatic nerve. For at least 3 months after the operation, there were no differences between the sectioned nerves and the intact contralateral nerves with respect to the increase in CAT activity immediately proximal to a ligature placed at various times after neurotomy and one day before sacrifice. On the other hand, there was a reduction in the CAT activity of more proximal segments of the sectioned nerves. The reduction of CAT activity was maximal (52 ± 3%) 3 weeks after the operation when the maximum increase (2·5-fold) in the av velocity of axoplasmic transport of CAT activity was recorded (n = 6, P < 0·001). The inclusion of purified (100-fold) mouse brain CAT activity in the assays for the CAT activity of nerve segments demonstrated that the differences in content and rate of transport were not due to the presence of activators or inhibitors of CAT activity. These differences probably reflect physiologic changes in the axoplasmic transport of cholinergic neurons during development and regeneration.  相似文献   

11.
EFFECTS OF COLCHICINE ON AXONAL TRANSPORT IN PERIPHERAL NERVES   总被引:6,自引:1,他引:5  
—Colchicine injected intracisternally markedly inhibited the rapid migration (300-400 mm/day) of labelled proteins in the hypoglossal and vagus nerve of the rabbit. The transport of acetylcholinesterase (EC 3.1.1.7) and choline acetyltransferase (EC 2.3.1.6) previously shown to move with the slow (5-26 mm/day) phase of axoplasmic transport in these nerves, was only partially blocked. In view of this differential effect on axonal flow, we suggest that the neurotubules, on which colchicine acts preferentially, are primarily involved in the rapid (300-400 mm/day) axoplasmic flow. After local injection of colchicine into the nerves both the rapidly migrating labelled proteins and the enzymes (AChE and ChAc) accumulated above the site of injection to the same degree as they accumulate above a nerve ligation. Since this blockage of enzyme transport occurred after concentrations of colchicine much higher than those used for intracisternal injections these findings after local injection may represent more severe effects on axonal transport systems.  相似文献   

12.
Abstract— Cat geniohyoid muscle samples containing endplate regions, when incubated in vitro at 37°C in phosphate buffer (pH 73, release acetylcholinesterase (AChE; EC 3.1.1.7) to the bathing medium. By treating the muscle samples with collagenase (EC 3.4.4.19), it was confirmed that most of the AChE released came from the endplates. Enzyme liberation was studied 10 days after either local injection of 10mM-cokhicine into the hypoglossal nerve or following nerve transection. Results showed that the rate of release is increased by denervation, but is not affected by axoplasmic transport blockage. It is postulated that the cellular contact between nerve and muscle—altered by denervation but not by interruption of axoplasmic transport—is an essential factor in maintaining the localization of end-plate AChE within the synaptic cleft substance. This does not invalidate the possible participation of ACh and muscle activity in such enzyme localization.  相似文献   

13.
The accumulation of [3H]leucine- and [3H]fucose-labelled axonal proteins, acetyl-CoA : choline O-acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) was studied proximal to a ligature applied to the hypoglossal nerve of the rabbit at different phases of nerve regeneration. After 1 week of regeneration, the accumulation of rapidly migrating [3H]leucine-labelled proteins, ChAc and AChE was reduced as compared to that of the contralateral nerve. In contrast, the accumulation of [3H]fucose-labelled glycoproteins was markedly increased. After a regeneration period of 4-6 weeks, the accumulation of proteins and glycoproteins in the regenerating nerve was increased whereas the accumulation of ChAc and AChE was almost normal. The results indicate an initial depression of the synthesis and axonal transport of the bulk of rapidly migrating proteins, ChAc and AChE in the chromatolytic hypoglossal neurons whereas the synthesis and transport of rapidly migrating glycoproteins is increased. These initial changes are less pronounced during the subsequent regeneration period.  相似文献   

14.
Acetylcholinesterase Distribution in Axotomized Frog Motoneurons   总被引:1,自引:0,他引:1  
Abstract: The distribution of acetylcholinesterase (AChE; EC 3.1.1.7) activity was examined in the perikarya and proximal axonal stumps of frog motoneurons injured by ventral root transection. Based upon measurements of net AChE accumulation in the proximal stumps of transected ventral roots, and upon orthograde clearances of AChE reported by others, it was determined that an amount of AChE equivalent to at least 0.7–2 times the perikaryal content of this enzyme enters the motor axon each day. A progressive decrease in the rate of AChE accumulation in transected axons during the first 3 days after ventral rhizotomy raised the possibility that excess enzyme might accumulate elsewhere within the axotomized motoneurons. However, AChE accumulation was detected only near the cut ends of the ventral roots and was not appreciably increased within injured motoneuronal cell bodies and proximal dendrites, which were isolated by a new method combining bulk and single-cell isolation techniques. These data suggest that AChE turnover is altered rapidly in response to axonal injury, thereby avoiding large perikaryal accumulations of this enzyme.  相似文献   

15.
Abstract— Anterograde and retrograde flux of axonal transported glycoproteins were examined in streptozotocin diabetic rats with 4 weeks'duration of the metabolic derangement.
[3H]Fucose and [14C]NeuNAc were injected into the fifth lumbar root ganglion and the accumulation of TCA-PTA insoluble activity proximal and distal to a sciatic nerve ligature was measured.
Accumulation of glycoproteins during 2 h collection periods was decreased distal to a ligature in diabetic animals whereas no abnormality of proximal accumulation was observed. These findings demonstrate an abnormality of the retrograde transport of glycoproteins in early experimental diabetes.  相似文献   

16.
We have recently found that there is a proximo-distal delay in the recovery of neurotoxic esterase (NTE) following inhibition along the sciatic nerve of the hen. To determine whether this delay could be due to a requirement for the transport of newly synthesized NTE from the cell body, we investigated the transport of NTE by measuring the rate of accumulation of activity at either one or two ligations. Although rapid turnaround of accumulated protein confounds calculation of the transport rate, it appeared that NTE is transported down the hen sciatic nerve at a rate close to 300 mm/day. Acetylcholinesterase (AChE) was found to be transported at a rate of about 500 mm/day, which is close to the expected rate of fast axoplasmic transport in the chicken. The relatively rapid turnaround of NTE compared with the retrograde transport rate precluded the estimation of a retrograde transport rate. A model is presented that accounts for turnaround as a result of exchange between mobile and stationary transport pools. Exchange of NTE between pools may account for the rapid turnaround of NTE described in this paper and for the proximo-distal delay in recovery as a dilution of newly synthesized NTE in the anterograde fast transport pool by inhibited protein as it travels down the nerve.  相似文献   

17.
The transport of acetylcholinesterase (AChE) and choline acetyltransferase (ChAc) were investigated by biochemical and histochemical methods. After ligature of one of the sciatic nerves of the rat for varying times—4, 14, 20 and 44 h—the normal levels and the accumulation of AChE and ChAc activities were investigated. It can be inferred from the results that there is a rapid accumulation of AChE activity just proximal to the ligature, while the increase in ChAc activity is less pronounced. Distal to the ligature the level of AChE is above the control value whereas, in contrast to this, the ChAc activity is significantly decreased. Histochemical demonstration of the two enzymes indicates that they are present in the cholinergic axons. The reaction end-product produced by AChE occurs within vesicles and neurotubules, while the endproduct due to ChAc appears to be free in the axoplasm, bound to neurofilaments and on the outer surface of vesicles and tubules.  相似文献   

18.
Abstract: The accumulations by axoplasmic transport of selected enzyme activities proximal and distal to a ligature placed on the sciatic nerve were monitored in rats exposed in utero to maternal antibodies to nerve growth factor (NGF) and in control rats. Littermates of the animals exposed to anti-NGF were shown elsewhere to have had a 70% reduction in the number of sensory neurons in dorsal root ganglia and a 90% reduction in number of neurons in superior cervical (sympathetic) ganglion. The accumulation of F--sensitive acid phosphatase activity was depressed 75% both proximal and distal to the tie. Accumulation of F--resistant acid phosphatase activity was depressed nearly 50% proximal to the tie. Distal accumulation of this activity did not occur in either group of rats. Accumulation of acetylcholinesterase activity was not affected. Proximal accumulation of glutamic dehydrogenase activity was depressed 30%. Distal accumulation of the activities of β-glucuronidase and hexokinase was depressed 50%. In the lumbar dorsal root ganglia, dry weight was reduced 40%, and the activities of peroxide-sensitive, F--resistant acid phosphatase and of the mitochondrial enzymes hexokinase, glutamic dehydrogenase, glutamic-oxalacetic transaminase, and NAD-dependent isocitric dehydrogenase were all reduced a little more, 45–50% per ganglion. However, the activities of the lysosomal enzymes, F--sensitive acid phosphatase and β-glucuronidase, of the peroxide-resistant, F--resistant acid phosphatase, and of the mitochondrial enzyme glutaminase were all reduced about 60% per ganglion. The results of these measurements were interpreted to suggest that much, and perhaps all, of the F--sensitive acid phosphatase activity in motion in peripheral nerve in rat is confined to sensory axons.  相似文献   

19.
3H-Lofentanil, an extremely potent opiate drug with a very long duration of action was injected intravenously into rats immediately after a ligature had been tied around the vagus nerve. Radioactivity accumulated on both sides of the ligature 24 hours and, to a larger extent, 48 hours after the injection. In contrast, there was no accumulation in animals pretreated with naloxone, neither in ligated sciatic nerves nor between two ligatures in the vagus nerve. An accumulation of stereospecific 3H-lofentanil binding sites measured in vitro was only detected above the ligature, thus in the proximal part of the nerve. When 3H-lofentanil was injected at different time intervals after ligation, we observed a tremendous drop of labelling in the distal and also but more slowly in the proximal part of the nerve. This could be due to a possible recycling or re-utilization of 3H-lofentanil binding sites. The present data are compatible with an axoplasmic flow and a possible recycling of opiate receptors labelled in vivo after intravenous injection of 3H-lofentanil.  相似文献   

20.
Reversal of anterograde rapid axonal transport of four molecular forms of acetylcholinesterase (AChE) was studied in chick sciatic nerve during the 24-h period following a nerve transection. Reversal of AChE activity started ~1 h after nerve transection, and all the forms of the enzyme, except the monomeric ones, showed reversal of transport. The quantity of enzyme activity reversed 24 h after transection was twofold greater than that normally conveyed by retrograde transport. We observed no leakage of the enzyme at the site of the nerve transection and no reversal of AChE activity transport in the distal segment of the severed nerve, a result indicating that the material carried by retrograde axonal transport cannot be reversed by axotomy. Thus, a nerve transection induces both quantitative and qualitative changes in the retrograde axonal transport, which could serve as a signal of distal injury to the cell body. The velocity of reverse transport, measured within 6 h after transection, was found to be 213 mm/day, a value close to that of retrograde transport (200 mm/day). This suggests that the reversal taking place in severed sciatic nerve is similar to the anterograde-to-retrograde conversion process normally occurring at the nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号