首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to water deficit, endogenous abscisic acid (ABA) accumulates in plants. This ABA serves as a signal for a multitude of processes, including regulation of gene expression. ABA accumulated in response to water deficit signals cellular as well as whole plant responses playing a role in the pattern of gene expression throughout the plant. Although the function of genes regulated by ABA during stress are currently poorly understood, a number of these genes may permit the plant to adapt to environmental stress.  相似文献   

2.
3.
Abscisic acid (ABA) and lectin content was immunoassayed in wheat cell cultures affected by temperature stress. The elevated temperature (40°C) resulted in a 7-fold increase in the level of ABA and a 10-fold increase in that of lectin. The increase in the lectin content in cells was preceded by ABA accumulation. It is suggested that this ABA increase induces the synthesis of lectin, which in addition to stress proteins, play an important role in controlling mechanisms of plant adaptation to unfavourable environments.Abbreviations ABA abscisic acid - WGA wheat germ agglutinin  相似文献   

4.
5.
由于植物在生长和发育过程中不可避免地要遭受各种环境胁迫的影响,植物只有通过对环境胁迫的快速感知和主动反应才得以生存和发展.植物这种对环境胁迫的快速感知和主动反应体现在环境胁迫下植物可以通过一系列基因的表达调控来实现各种抗逆的生理生化反应.虽然得以鉴定的水分胁迫应答基因越来越多,但其中只有极少的基因在抗逆中的基本功能已得到初步认识.从细胞对水分胁迫原初信号的感知到基因表达调控包括了一系列复杂的细胞逆境信息传递过程.脱落酸(abscisic acid, ABA)作为重要的细胞逆境信号物质介导了一系列基因表达,因此从细胞对水分胁迫原初信号的感知到编码ABA生物合成关键酶基因的表达是一条最为关键的细胞逆境信息传递途径.逆境应答基因功能的鉴定以及对整个细胞信号传递过程中详尽的分子机制的了解无疑是今后最有趣的也是最为重要的研究课题.  相似文献   

6.
从水分胁迫的识别到ABA积累的细胞信号转导   总被引:15,自引:1,他引:14  
由于植物在生长和发育过程中不可避免地要遭受各种环境胁迫的影响 ,植物只有通过对环境胁迫的快速感知和主动反应才得以生存和发展。植物这种对环境胁迫的快速感知和主动反应体现在环境胁迫下植物可以通过一系列基因的表达调控来实现各种抗逆的生理生化反应。虽然得以鉴定的水分胁迫应答基因越来越多 ,但其中只有极少的基因在抗逆中的基本功能已得到初步认识。从细胞对水分胁迫原初信号的感知到基因表达调控包括了一系列复杂的细胞逆境信息传递过程。脱落酸 (abscisicacid ,ABA)作为重要的细胞逆境信号物质介导了一系列基因表达 ,因此从细胞对水分胁迫原初信号的感知到编码ABA生物合成关键酶基因的表达是一条最为关键的细胞逆境信息传递途径。逆境应答基因功能的鉴定以及对整个细胞信号传递过程中详尽的分子机制的了解无疑是今后最有趣的也是最为重要的研究课题。  相似文献   

7.
8.
9.
10.
11.
12.
Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the “C/N balance”, is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade.  相似文献   

13.
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.  相似文献   

14.
15.
In the Arabidopsis root, patterning of the epidermal cell types is position-dependent. The epidermal cell pattern arises early during root development, and can be visualized using reporter genes driven by the GLABRA (GL)2 promoter as markers. The GL2 gene is preferentially expressed in the differentiating hairless cells (atrichoblasts) during a period in which epidermal cell identity is believed to be established. We show that AtAGP30 is also expressed in atrichoblasts. This gene encodes an arabinogalactan-protein (AGP) that is known to play a role in root regeneration and increases abscisic acid (ABA)-response rates. Although the expression level of this gene is regulated by the plant growth factors ABA and ethylene, only ABA was found to affect the tissue-specific pattern of expression. ABA also disrupts the expression pattern of the GL2::GUS (beta-glucuronidase) reporter gene. Our results indicate that ABA regulates epidermal cell-type-specific gene expression in the meristematic zone of the Arabidopsis root, while ethylene is known to act at later stages of epidermal differentiation. Despite its effects on the early stages of root epidermal patterning, ABA does not affect root hair formation on mature wild-type epidermal cells, suggesting that other developmental cues, like positional information, can progressively over-ride the ABA-mediated disruption of early epidermal patterning.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号