首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.  相似文献   

2.
We recently reported that Rho kinase is required for sustained ERK signaling and the consequent mid-G(1) phase induction of cyclin D1 in fibroblasts. The results presented here indicate that these Rho kinase effects are mediated by the formation of stress fibers and the consequent clustering of alpha5beta1 integrin. Mechanistically, alpha5beta1 signaling and stress fiber formation allowed for the sustained activation of MEK, and this effect was mediated upstream of Ras-GTP loading. Interestingly, disruption of stress fibers with ML-7 led to G(1) phase arrest while comparable disruption of stress fibers with Y27632 (an inhibitor of Rho kinase) or dominant-negative Rho kinase led to a more rapid progression through G(1) phase. Inhibition of either MLCK or Rho kinase blocked sustained ERK signaling, but only Rho kinase inhibition allowed for the induction of cyclin D1 and activation of cdk4 via Rac/Cdc42. The levels of cyclin E, cdk2, and their major inhibitors, p21(cip1) and p27(kip1), were not affected by inhibition of MLCK or Rho kinase. Overall, our results indicate that Rho kinase-dependent stress fiber formation is required for sustained activation of the MEK/ERK pathway and the mid-G(1) phase induction of cyclin D1, but not for other aspects of cdk4 or cdk2 activation. They also emphasize that G(1) phase cell cycle progression in fibroblasts does not require stress fibers if Rac/Cdc42 signaling is allowed to induce cyclin D1.  相似文献   

3.
A Skp2 autoinduction loop and restriction point control   总被引:1,自引:0,他引:1       下载免费PDF全文
We describe a self-amplifying feedback loop that autoinduces Skp2 during G1 phase progression. This loop, which contains Skp2 itself, p27(kip1) (p27), cyclin E-cyclin dependent kinase 2, and the retinoblastoma protein, is closed through a newly identified, conserved E2F site in the Skp2 promoter. Interference with the loop, by knockin of a Skp2-resistant p27 mutant (p27(T187A)), delays passage through the restriction point but does not interfere with S phase entry under continuous serum stimulation. Skp2 knock down inhibits S phase entry in nontransformed mouse embryonic fibroblasts but not in human papilloma virus-E7 expressing fibroblasts. We propose that the essential role for Skp2-dependent degradation of p27 is in the formation of an autoinduction loop that selectively controls the transition to mitogen-independence, and that Skp2-dependent proteolysis may be dispensable when pocket proteins are constitutively inactivated.  相似文献   

4.
Cyclin D1 gene induction is a key event in G1 phase progression. Our previous studies indicated that signaling to cyclin D1 is cell type-dependent because the timing of cyclin D1 gene expression in MCF10A mammary epithelial cells and mesenchymal cells such as fibroblasts and vascular smooth muscle cells is very different, with epithelial cells first expressing cyclin D1 in early rather than mid-G1 phase. In this report, we induced a mesenchymal phenotype in MCF10A cells by long-term exposure to TGF-beta and used the control and transitioned cells to examine cell type specificity of the signaling pathways that regulate cyclin D1 gene expression. We show that early-G1 phase cyclin D1 gene expression in MCF10A cells is under the control of Rac, whereas mid-G1 phase cyclin D1 induction requires parallel signaling from Rac and ERK, both in the control and transitioned cells. This combined requirement for Rac and ERK signaling is associated with an increased requirement for intracellular tension, Rb phosphorylation, and S phase entry. A similar co-regulation of cyclin D1 mRNA by Rac and ERK is seen in primary mesenchymal cells. Overall, our results reveal two mechanistically distinct phases of Rac-dependent cyclin D1 expression and emphasize that the acquisition of Rac/ERK co-dependence is required for the mid-G1 phase induction of cyclin D1 associated with S phase entry.  相似文献   

5.
Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts.  相似文献   

6.
Cyclins, cyclin-dependent kinases (CDKs) and the CDK inhibitor p27(kip1) are known to be involved in the regulation of G(1)/S phase transition by estrogen in the rodent endometrium. Little is known, however, of the cell-specific location and regulation of these proteins during this process, or the way they mediate the differential effect of estrogen in the epithelium and stroma of the endometrium. Here we studied the cell-specific regulation of D-type cyclin (D(1-3)), of cyclin A and E, of CDK(2) and p27(kip1) by 17beta-estradiol in the endometrium of ovariectomized rats. Time-course changes in these proteins in the endometrium of ovariectomized rats were examined by immunohistochemistry at 2, 4, 8, 12, 20, 28 and 32 h after estrogen stimulation. The expression of proliferation cell nuclear antigen (PCNA) was also studied as a marker of proliferating cells. As expected from previous studies, all the proteins investigated were up-regulated by estrogen, with peak times from 8 to 32 h. The induction of cyclin D(1) is predominant in the glandular epithelium, whereas cyclin D(3) increases mainly in the luminal epithelium. The up-regulation of p27(kip1) is restricted to stromal cells with a 'gradient-like' expression pattern, in which the sub-epithelial (functional) layer showed stronger staining than the basal layer. The differential regulation of cyclins and p27(kip1) in the epithelium and stroma of the endometrium appear indicative of distinct actions of estrogen in different cell types in the uterus, as D-type cyclins mediate the proliferative effect of estrogen in epithelial cells while p27(kip1) might help prevent the same effect in the stroma.  相似文献   

7.
The most well understood function of the D-type cyclins is to activate the G1kinases, cdk4 and cdk6, and target the retinoblastoma gene product (pRb) forphosphorylation and inactivation. pRb can suppress S phase entry, cause a transientG1 arrest following DNA damage, and is critical in establishing terminal cell cyclewithdrawal in cells exposed to differentiation or senescence-inducing signals. Each ofthese functions of pRb can be demonstrated in cultured cells derived from humantumors that have suffered RB1 gene inactivation. In such in vitro assays, coexpressionof D type cyclins has been shown to inhibit the function of pRb, likelyreflecting an oncogenic role of cyclin D1 in vivo. Two regions of cyclin D, the LxCxEpRb-binding motif, and the cyclin box, are thought to be critical for the proper functionof cyclin D. Here we show that the LxCxE motif is dispensable in cyclin D1 for allfunctions tested, but is required by cyclin D2. This observation suggests that there isa functional difference between cyclins D1 and D2 in pRb regulation, and arguesagainst complete functional redundancy of these D cyclins. In addition, the ability ofcyclins D1 and D2 to activate cdk partners is required for induction of pRbphosphorylation and S phase entry. However, mutant forms of cyclins D1 and D2that are incapable of activating kinase partners were still able to prevent pRb-inducedsenescence. Thus, D cyclins have both kinase-dependent and kinase-independentmechanisms of interfering with proliferation arrest and senescence.  相似文献   

8.
9.
In this study, we investigated the mechanisms responsible for the growth-inhibitory action of parathyroid hormone-related protein (PTHRP) in A10 vascular smooth muscle cells (VSMC). Fluorescence-activated cell sorting analysis of serum-stimulated VSMC treated with PTHRP or dibutyryl-cAMP (DBcAMP) demonstrated an enrichment of cells in G1 and a reduction in the S phase. Measurement of DNA synthesis in platelet-derived growth factor-stimulated VSMC treated with DBcAMP revealed that cells became refractory to growth inhibition by 12-16 h, consistent with blockade in mid-G1. cAMP treatment blunted the serum-induced rise in cyclin D1 during cell cycle progression without altering levels of the cyclin-dependent kinase cdk4 or cyclin E and its associated kinase, cdk2. Exposure of cells to PTHRP or cAMP resulted in a reduction in retinoblastoma gene product (Rb) phosphorylation. Immunoblotting of extracts from cAMP-treated cells with antibodies to cdk inhibitors revealed a striking increase in p27(kip1) abundance coincident with the G1 block. Immunoprecipitation with an anti-cyclin D1 antibody of cell lysates prepared from cAMP-treated cells followed by immunoblotting with antisera to p27(kip1) disclosed a threefold increase in p27(kip1) associated with cyclin D1 compared with lysates treated with serum alone. We conclude that PTHRP, by increasing intracellular cAMP, induces VSMC cycle arrest in mid-G1. This occurs secondary to a suppression in cyclin D1 and induction of p27(kip1) expression, which in turn inhibits Rb phosphorylation.  相似文献   

10.
We have examined the regulation of p21(cip1) by soluble mitogens and cell anchorage as well as the relationship between the expression of p21(cip1) and activation of the ERK subfamily of MAP kinases. We find that p21(cip1) expression in G1 phase can be divided into two discrete phases: an initial induction that requires growth factors and the activation of ERK, and then a subsequent decline that is enhanced by cell anchorage in an ERK-independent manner. In contrast to the induction of cyclin D1, the induction of p21(cip1) is mediated by transient ERK activity. Comparative studies with wild-type and p21(cip1)-null fibroblasts indicate that adhesion-dependent regulation of p21(cip1) is important for proper control of cyclin E-cdk2 activity. These data lead to a model in which mitogens and anchorage act in a parallel fashion to regulate G1 phase expression of p21(cip1). They also show that (a) growth factors and growth factor/extracellular matrix cooperation can have different roles in regulating G1 phase ERK activity and (b) both transient and sustained ERK signals have functionally significant roles in controlling cell cycle progression through G1 phase.  相似文献   

11.
Growth factors and cell anchorage jointly regulate transit through G1 in almost all cell types, but the cell cycle basis for this combined requirement remains largely uncharacterized. We show here that cell adhesion and growth factors jointly regulate the cyclin D1- and E- dependent kinases. Adhesion to substratum regulates both the induction and translation of cyclin D1 mRNA. Nonadherent cells fail to phosphorylate the retinoblastoma protein (Rb), and enforced expression of cyclin D1 rescues Rb phosphorylation and entry into S phase when G1 cells are cultured in the absence of substratum. Nonadherent cells also fail to activate the cyclin E-associated kinase, and this effect can be linked to an increased association of the cdk inhibitors, p21 and p27. These data describe a striking convergence in the cell cycle controls used by the two major signal transduction systems responsible for normal and abnormal cell growth. Taken together with our previous studies showing adhesion-dependent expression of cyclin A, they also establish the cell cycle basis for explaining the combined requirement for growth factors and the extracellular matrix in transit through the Rb checkpoint, entry into S phase, and anchorage-dependent growth.  相似文献   

12.
Conditional overexpression of human cyclins B1, D1, and E was accomplished by using a synthetic cDNA expression system based on the Escherichia coli tetracycline repressor. After induction of these cyclins in asynchronous Rat-1 fibroblasts, a decrease in the length of the G1 interval was observed for cyclins D1 and E, consistent with an acceleration of the G1/S phase transition. We observed, in addition, a compensatory lengthening of S phase and G2 so that the mean cell cycle length in populations constitutively expressing these cyclins was unchanged relative to those of their uninduced counterparts. We found that expression of cyclin B1 had no effect on cell cycle dynamics, despite elevated levels of cyclin B-associated histone H1 kinase activity. Induction of cyclins D1 and E also accelerated entry into S phase for synchronized cultures emerging from quiescence. However, whereas cyclin E exerted a greater effect than cyclin D1 in asynchronous cycling cells, cyclin D1 conferred a greater effect upon stimulation from quiescence, suggesting a specific role for cyclin D1 in the G0-to-G1 transition. Overexpression of cyclins did not prevent cells from entering into quiescence upon serum starvation, although a slight delay in attainment of quiescence was observed for cells expressing either cyclin D1 or cyclin E. These results suggest that cyclins D1 and E are rate-limiting activators of the G1-to-S phase transition and that cyclin D1 might play a specialized role in facilitating emergence from quiescence.  相似文献   

13.
Cofilin, a ubiquitously expressed actin binding protein, is responsible for the formation of the actin cytoskeleton and is indispensable for cell cycle control. However, the association between cofilin expression and the cell cycle remains to be elucidated. In this study, we found that the expression level of cofilin up-regulated in G1 phase-arrested confluent cells, while knockdown of cofilin expression by small interference RNA (siRNA) in these cells led to a reduction in the population of G1 cells. To investigate the role of cofilin in the control of G1 phase progression, a tet-on gene expression system was introduced to over-express different concentrations of cofilin in cells. The results showed that G1 phase progression was blocked following induction of exogenous cofilin. A survey of the cell cycle proteins controlling the G1 phase progression revealed that the cyclin-dependent kinase inhibitor (CKI) p27kip1 was the primary molecule induced by over-expressed cofilin in a time and dose dependent manner. Up-regulated p27kip1 repressed phosphorylation of the retinoblastoma protein (Rb) mediated by cyclin D1/CDK4 activity. Conversely, siRNA against p27kip1 expression in the cofilin over-expressing cells released the G1 phase arrest. Furthermore, we found that over-expression of cofilin led to induction of p27kip1 gene promoter transactivation using luciferase reporter gene assay. This effect was associated with increase of p27kip1 mRNA transiently. In addition, inhibition of threonine-187 phosphorylation of p27kip1 protein for ubiquitinyl-proteasomal mediated degradation was also involved in up-regulation of p27 kip1. These data suggest that cofilin expression and its regulation of p27kip1 expression is important for the control of G1 phase progression.  相似文献   

14.
This study addresses the nature of the critical labile event that couples at restriction point mitogenic cascades with the autonomous part of the cell cycle. In primary cultures of dog thyroid epithelial cells, kinetic experiments indicate that a labile cAMP-dependent event positively controls a late G1 commitment to DNA replication and RB phosphorylation. As previously shown in this system, the cAMP-dependent mitogenic pathway differs from the most generally envisaged growth factor cascades as it stimulates the accumulation of p27(kip1) but not of cyclins D. Nevertheless, cyclin D3 and CDK4 activity are essential in the cAMP-dependent mitogenesis, and cAMP unmasks the DCS-22 epitope of cyclin D3 and induces the nuclear translocations and assembly of cyclin D3 and CDK4 in a complex that also contains p27(kip1). Unexpectedly, the washing out of forskolin rapidly arrested S phase entry and the accumulation of hyperphosphorylated RB, but did not reverse any of the above events associated with cyclin D3-CDK4 activation. This implies that even after induction of stable nuclear cyclin D3-CDK4 complexes, dog thyrocytes still depend on cAMP for RB phosphorylation and commitment to DNA synthesis, which suggests that a key labile event responsible for a last control of restriction point passage remains to be uncovered, in the cAMP-dependent cell cycle of dog thyrocytes and possibly other systems.  相似文献   

15.
Our studies examined the effects of p27(kip1) and p21(cip1) on the assembly and activity of cyclin D3-cdk4 complexes and determined the composition of the cyclin D3 pool in cells containing and lacking these cyclin-dependent kinase inhibitors. We found that catalytically active cyclin D3-cdk4 complexes were present in fibroblasts derived from p27(kip1)-p21(cip1)-null mice and that immunodepletion of extracts of wild-type cells with antibody to p27(kip1) and/or p21(cip1) removed cyclin D3 protein but not cyclin D3-associated activity. Similar results were observed in experiments assaying cyclin D1-cdk4 activity. Data obtained using mixed cell extracts demonstrated that p27(kip1) interacted with cyclin D3-cdk4 complexes in vitro and that this interaction was paralleled by a loss of cyclin D3-cdk4 activity. In p27(kip1)-p21(cip1)-deficient cells, the cyclin D3 pool consisted primarily of cyclin D3 monomers, whereas in wild-type cells, the majority of cyclin D3 molecules were complexed to cdk4 and either p27(kip1) or p21(cip1) or were monomeric. We conclude that neither p27(kip1) nor p21(cip1) is required for the formation of cyclin D3-cdk4 complexes and that cyclin D3-cdk4 complexes containing p27(kip1) or p21(cip1) are inactive. We suggest that only a minor portion of the total cyclin D3 pool accounts for all of the cyclin D3-cdk4 activity in the cell regardless of whether the cell contains p27(kip1) and p21(cip1).  相似文献   

16.
Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signaling and, thereby, the expression of cyclin D1. Our results lead to a model of cyclin A gene regulation in which mitogens play a permissive role by stimulating early G(1)-phase phosphorylation of CREB and a distinct regulatory role by cooperating with the organized actin cytoskeleton to regulate the duration of ERK signaling, the expression of cyclin D1, and the timing of pocket protein phosphorylation.  相似文献   

17.
Ectopic expression of Myc induces Cdk2 kinase activity in quiescent cells and antagonizes association of p27(kip1) with Cdk2. The target gene(s) by which Myc mediates this effect is largely unknown. We now show that p27 is rapidly and transiently sequestered by cyclin D2-Cdk4 complexes upon activation of Myc and that cyclin D2 is a direct target gene of Myc. The cyclin D2 promoter is repressed by Mad-Max complexes and de-repressed by Myc via a single highly conserved E-box element. Addition of trichostatin A to quiescent cells mimics activation of Myc and induces cyclin D2 expression, suggesting that cyclin D2 is repressed in a histone deacetylase-dependent manner in quiescent cells. Inhibition of cyclin D2 function in established cell lines, either by ectopic expression of p16 or by antibody injection, inhibits Myc-dependent dissociation of p27 from Cdk2 and Myc-induced cell cycle entry. Primary mouse fibroblasts that are cyclin D2-deficient undergo accelerated senescence in culture and are not immortalized by Myc; induction of apoptosis by Myc is unimpaired in such cells. Our data identify a downstream effector pathway that links Myc directly to cell cycle progression.  相似文献   

18.
Trichostatin A (TSA), a global repressor of histone deacetylase activity, inhibits the proliferation of a number of cell types. However, the identification of the mechanisms underlying TSA-mediated growth arrests has remained elusive. In order to resolve in more detail the cellular process modulated during the growth inhibition induced by TSA, we studied the effect of the drug on G(0)/G(1) traverse in mitogen-stimulated quiescent Balb/c-3T3 cells. Cyclin D1 and retinoblastoma proteins were induced following the mitogenic stimulation of both control and TSA-treated cells, and cyclin D1 formed complexes with CDK4 under both conditions. However, cyclin D1-associated kinase was not increased in growth-arrested cells. The lack of cyclin D-associated kinase was paralleled by an accumulation of RB in a hypophosphorylated form, as would be expected. In contrast, p130 became partially phosphorylated, accompanied by a marked increase in p130-dependent E2F DNA binding activity and a partial release of free E2F-4. Despite the presence of E2F complexes not bound to pocket proteins, late G(1) E2F-dependent gene expression was not observed. The lack of cyclin D1-associated kinase in TSA-treated cultures was potentially due to high levels of the cyclin-dependent inhibitor p27(kip1). However, the modulation of p27(kip1) levels by the deacetylase inhibitor cannot be responsible for the induction of the cell cycle arrest, since the growth of murine embryo fibroblasts deficient in both p27(kip1) and p21(cip1) was also inhibited by TSA. These data support a model in which TSA inhibits very early cell cycle traverse, which, in turn, leads to a decrease in cyclin D1-associated kinase activation and a repression of late cell cycle-dependent events. Alterations in early G(0)/G(1) gene expression accompany the TSA-mediated growth arrest.  相似文献   

19.
Enhanced intracellular iron levels are essential for proliferation of mammalian cells. If cells have entered S phase when iron is limiting, an adequate supply of deoxynucleotides cannot be maintained and the cells arrest with incompletely replicated DNA. In contrast, proliferating cells that are not in S phase, but have low iron pools, arrest in late G1. In this report the mechanism of iron-dependent G1 arrest in normal fibroblasts was investigated. Cells were synchronized in G0 by contact inhibition and serum deprivation. Addition of serum caused the cells to re-enter the cell cycle and enter S phase. However, if the cells were also treated with the iron chelator deferoxamine, S phase entry was blocked. This corresponded to elevated levels of the cyclin dependent kinase inhibitor p27Kip1 and inhibition of CDK2 activity. Expression of other cell cycle regulatory proteins was not affected, including the induction of cyclins D1 and E. When the quiescent serum starved cells were supplemented with a readily usable form of iron in the absence of serum or any other growth factors, a significant population of the cells entered S phase. This was associated with downregulation of p27Kip1 and increased CDK2 activity. Using an IPTG-responsive construct to artificially raise p27Kip1 levels blocked the ability of iron supplementation to promote S phase entry. Thus it appears that p27Kip1 is a mediator of G1 arrest in iron depleted Swiss 3T3 fibroblasts. We propose that this is part of an iron-sensitive checkpoint that functions to ensure that cells have sufficient iron pools to support DNA synthesis prior to entry into S phase.  相似文献   

20.
Arginine vasopressin (AVP) is a nonapeptide long known as an endocrine and paracrine regulator of important systemic functions, namely, vasoconstriction, gluconeogenesis, corticosteroidogenesis, and excretion of water and urea. Here we report, for the first time, that AVP specifically inhibits expression of the cyclin D1 gene, leading to cell cycle blockage and halting cell proliferation. In G0/G1-arrested mouse Y1 adrenocortical tumor cells, maintained in serum-free medium (SFM), AVP mimics FGF2, promoting rapid ERK1/2 activation (5 min) followed by c-Fos protein induction (2 h). PKC inhibitor Go6983 and PI3K inhibitors wortmannin and LY294002 all inhibit ERK1/2 activation by AVP, but not by FGF2. Thus, AVP and FGF2 concur to activate ERK1/2 by different regulatory pathways. However, AVP is not a mitogenic factor for Y1 cells. On the contrary, AVP strongly antagonizes FGF2 late induction (2-5 h) of the cyclin D1 gene, down-regulating both cyclin D1 mRNA and protein. AVP inhibition of cyclin D1 expression is sufficient to block G1 phase progression and cell entry into the S phase, monitored by BrdU nuclear labeling. In addition, AVP completely inhibits proliferation of Y1 cells in 10% fetal calf serum (10% FCS) medium. On the other hand, ectopic expression of the cyclin D1 protein renders Y1 cells resistant to AVP for both entry into the S phase in SFM and continuous proliferation in 10% FCS medium. In conclusion, inhibition of cyclin D1 expression by AVP is an efficient mechanism of cell cycle blockage and consequent proliferation inhibition in Y1 adrenocortical cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号