首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.  相似文献   

2.
H Hori  S Osawa 《Bio Systems》1986,19(3):163-172
The secondary structure models of 5S rRNA have been constructed from the primary structure of 352 5S rRNA species available at present. All the 5S rRNAs examined can take essentially the same secondary structure, however they reveal characteristic differences between eukaryotes, metabacteria (= archaebacteria) and eubacteria. These three types of models can be further subgrouped by minor but characteristic differences. A phylogenic tree of organisms has been constructed using these 5S rRNA sequences by the weighted pairing method (WPG method). The tree reveals that there exist several major groups of eubacteria which seem to have diverged into different directions in the early stages of bacterial evolution. After emergence of eubacteria, metabacteria and eukaryotes separated from each other from their common ancestor. In the eukaryotic evolution, red algae (Rhodophyta) emerged first, and thereafter, thraustocytrids-Proctista, Ascomycota, green plants (green algae and land plants), Basidiomycota, Chromophyta (brown algae, diatoms and golden-yellow algae), slime- and water molds, various protozoans, and animals emerged in this order.  相似文献   

3.
The chemical modification of adenine residues in mouse 5S rRNA with monoperphthalate was carried out to investigate the higher ordered structure of 5S rRNA. The adenine residues at positions 11, 22 (or/and 23), 49 (or/and 50), 54 (or/and 55), 77, 83, 88, 90 and 100 (or/and 101) were modified. This result further confirmed the secondary structure of 5S rRNA constituted of 5 helices and 5 loops postulated by other chemical modifications.  相似文献   

4.
We report on the construction of a novel strain of E. coli that can be useful for studies on the structure/function relationship of 5S rRNAs. The bacterial strain is deficient in six of the eight naturally occurring 5S rRNA genes (operons B, D, H, G, E) and demonstrates a greatly reduced growth rate that can be compensated by the plasmid-encoded expression of 5S rRNA. The relatively large difference in growth rate between compensated and non-compensated mutants provides the basis for a quick and simple assaying system for both the evaluation and mass screening of divergent 5S rRNA sequences for function. We describe the construction of the 5S rRNA deletion mutant BDHGE and characterize the usefulness and limitations of the system for evaluating structure/function relationships of 5S rRNA sequence. Received: 20 August 2000 / Accepted: 2 January 2001  相似文献   

5.
The termini of rRNA processing intermediates and of mature rRNA species encoded by the 3' terminal region of 23S rDNA, by 4.5S rDNA, by the 5' terminal region of 5S rDNA and by the 23S/4.5S/5S intergenic regions from Zea mays chloroplast DNA were determined by using total RNA isolated from maize chloroplasts and 32P-labelled rDNA restriction fragments of these regions for nuclease S1 and primer extension mapping. Several processing sites detectable by both 3' and 5' terminally labelled probes could be identified and correlated to the secondary structure for the 23S/4.5S intergenic region. The complete 4.5S/5S intergenic region can be reverse transcribed and a common processing site for maturation of 4.5S and 5S rRNA close to the 3' end of 4.5S rRNA was detected. It is therefore concluded that 23S, 4.5S and 5S rRNA are cotranscribed.  相似文献   

6.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

7.
8.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

9.
5S rRNA Data Bank.   总被引:6,自引:3,他引:3       下载免费PDF全文
In this paper we present the updated version of the compilation of 5S rRNA and 5S rDNA nucleotide sequences. It contains 1622 primary structures of 5S rRNAs and 5S rRNA genes from 888 species. These include 58 archaeal, 427 eubacterial, 34 plastid, nine mitochondrial and 1094 eukaryotic DNA or RNA nucleotide sequences. The sequence entries are divided according to the taxonomic position of the organisms. All individual sequences deposited in the 5S rRNA Database can be retrieved using the WWW-based, taxonomic browser at http://rose.man.poznan.pl/5SData/5SRNA.html++ + or http://www.chemie. fu-berlin.de/fb_chemie/agerdmann/5S_rRNA.html . The files with complete sets of data as well as sequence alignments are available via anonymous ftp.  相似文献   

10.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

11.
We have determined the nucleotide sequence of ribosomal 5S RNA from bovine liver. The comparison of this sequence with those from other eukaryotic sources shows that a common secondary structure model for all eukaryotic 5S rRNAs may exist. Analysis of the evolutionary conserved nucleotides in metazoan 5S rRNAs suggests that the tertiary interactions, proposed earlier for plant 5S rRNA, are also possible.  相似文献   

12.
This study demonstrates the efficacy of a direct 5S rRNA assay for the characterization of mixed microbial populations by using as an example the bacteria associated with acidic mining environments. The direct 5S rRNA assay described herein represents a nonselective, direct molecular method for monitoring and characterizing the predominant, metabolically active members of a microbial population. The foundation of the assay is high-resolution denaturing gradient gel electrophoresis (DGGE), which is used to separate 5S rRNA species extracted from collected biomass. Separation is based on the unique migration behavior of each 5S rRNA species during electrophoresis in denaturing gradient gels. With mixtures of RNA extracted from laboratory cultures, the upper practical limit for detection in the current experimental system has been estimated to be greater than 15 different species. With this method, the resolution was demonstrated to be effective at least to the species level. The strength of this approach was demonstrated by the ability to discriminate between Thiobacillus ferrooxidans ATCC 19859 and Thiobacillus thiooxidans ATCC 8085, two very closely related species. Migration patterns for the 5S rRNA from members of the genus Thiobacillus were readily distinguishable from those of the genera Acidiphilium and Leptospirillum. In conclusion, the 5S rRNA assay represents a powerful method by which the structure of a microbial population within acidic environments can be assessed.  相似文献   

13.
14.
Summary Single-strand-specific nuclease S1 was employed as a structural probe to confirm locations of unpaired nucleotide bases in 5S rRNAs purified from prokaryotic species of rRNA superfamily I. Limited nuclease S1 digests of 3- and 5-end-labeled [32P]5S rRNAs were electrophoresed in parallel with reference endoribonuclease digests on thin allel with reference endoribonuclease digests on thin sequencing gels. Nuclease S1 primary hydrolysis patterns were comparable for 5S rRNAs prepared from all 11 species examined in this study. The locations of base-paired regions determined by enzymatic analysis corroborate the general features of the proposed universal five-helix model for prokaryotic 5S rRNA, although the results of this study suggest a significant difference between prokaryotic and eukaryotic 5S rRNAs in the evolution of helix IV. Furthermore, the extent of base-pairing predicted by helix IV needs to be reevaluated for eubacterial species. Clipping patterns in helices II and IV appear to be consistent with a secondary structural model that undergoes a conformational rearrangement between two (or more) structures. Primary clipping patterns in the helix II region, obtained by S1 analysis, may provide useful information concerning the tertiary structure of the 5S rRNA molecule.  相似文献   

15.
5S rRNAs from Spinacea oleracea cytoplasmic and chloroplastic ribosomes have been subjected to digestion with the single strand specific nuclease S1 and to chemical modification of cytidines by sodium bisulphite in order to probe the RNA structure. According to these data, cytoplasmic 5S rRNA can be folded as proposed in the general eukaryotic 5S rRNA structure (1) and 5S rRNA from chloroplastides is shown to be more related to the general eubacterial structure (2).  相似文献   

16.
Interrelationships among 5 S, 5.8 S, and 28 S rRNA were probed by methods employed in the accompanying report (Choi, Y. C. (1985) J. Biol. Chem. 260, 12769-12772). Two complexes were isolated from 20 S ribonucleoprotein (RNP) fraction and 60 S subunit. The 20 S RNP fraction was found to contain the 3'-340 nucleotide fragment (domain VII) in association with 5 S rRNA. The 60 S subunit contained a stable complex consisting of the 5'-upstream portion (4220-4462, domain VI and VII), the 3'-downstream portion (4463-4802, domain VII) of 3'-583 nucleotides fragment, and 5.8 S rRNA. By computer analysis and hybridization, the 5'-upstream portion was found to contain the 5.8 S rRNA contact site. By affinity chromatography, the 3'-downstream portion was found to contain the 5 S rRNA association site. Furthermore, by comparison with the secondary structure of 28 S rRNA proposed by Hadjiolov et al. (Hadjiolov, A. A., Georgiev, O. I., Nosikov, V. V., and Yavachev, L. P. (1984) Nucleic Acids Res. 12, 3677-3693), it was found that domain VII is capable of binding 5.8 S rRNA and 5 S rRNA juxtaposed to each other. Accordingly, a model was proposed to indicate that a possible contact site for 5.8 S rRNA is within the region surrounding the alpha-sarcin site (4333-4350) and is a possible association site of 5 S rRNA within the 3'-downstream portion (4463-4802) of the 3'-583 nucleotide fragment (4220-4802).  相似文献   

17.
18.
裸子植物5S rRNA基因序列变异及二级结构特征   总被引:2,自引:0,他引:2  
在高等植物中,5SrRNA基因一级结构是高度保守的,二级结构也相当一致。通过比较18种裸子植物5SrRNA基因序列和二级结构变异,发现55%的核苷酸位点是可变的,这种变异有68%发生在干区(双链区),其中一些变异,如双链的互补性核苷酸替代,GU配对等能够维系5SrRNA二级结构的稳定性。环区相对保守,这与5SrRNA三级结构折叠或在转录翻译过程中蛋白质、RNA的结合相关。另外,首次报道了松属环E区核苷酸的变异性,这可能与其他区域的变异一样,是假基因造成的结果。5SrRNA基因信息可反映大分类群的系统进化关系,但由于基因长度短,信息量小,其在近缘种系统分类的应用受到限制。  相似文献   

19.
Using 3'- and 5'-end labelling sequencing techniques, the following sequence for the cytoplasmic 5S rRNA of the horsetail Equisetum arvense could be determined: (sequence in text). This sequence exhibits all features expected for higher plant cytoplasmic 5S rRNAs, and can be fitted to the secondary structure model for 5S rRNA proposed by De Wachter et al. (15).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号