首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caesium (Cs+) is a potentially toxic mineral element that isreleased into the environment and taken up by plants. AlthoughCs+ is chemically similar to potassium (K+), and much is knownabout K+ transport mechanisms, it is not clear through whichK+ transport mechanisms Cs+ is taken up by plant roots. In thisstudy, the role of AtHAK5 in high affinity K+ and Cs+ uptakewas characterized. It is demonstrated that AtHAK5 is localizedto the plasma membrane under conditions of K+ deprivation, whenit is expressed. Growth analysis showed that AtHAK5 plays arole during severe K+ deprivation. Under K+-deficient conditionsin the presence of Cs+, Arabidopsis seedlings lacking AtHAK5had increased inhibition of root growth and lower Cs+ accumulation,and significantly higher leaf chlorophyll concentrations thanwild type. These data indicate that, in addition to transportingK+ in planta, AtHAK5 also transports Cs+. Further experimentsshowed that AtHAK5 mediated Cs+ uptake into yeast cells andthat, although the K+ deficiency-induced expression of AtHAK5was inhibited by low concentrations of NH  相似文献   

2.
Effluxes of K+ and Ca2+ from root segments of both wheat, Triticunaestivum L. cv. Capelle and mung bean, Vigna radiata (L.) Wilczek,were measured in the presence or absence of 20 mol m–3para-fluorophenylalanine (p-FPA). The results were used to estimatethe compartment contents and transmembrane K+ and Ca2+ fluxesin root cortex cells. Using the Ussing-Teorell flux equationas the criterion, it was concluded that entry of K+ from theoutside solution to the cytoplasm, and from the cytoplasm tothe vacuole were active in both wheat and mung bean. Also, inboth species, Ca2+ entered the cytoplasm passively across theplasmalemma and was actively pumped back to the external solution.However, interpretation of the direction of active transportacross the tonoplast depends upon an assumption about Ca2+ activityin the cytoplasm. The only qualitative effect of p-FPA was to alter the drivingforce for K+ influx, across the plasmalemma in wheat, from anactive to a passive one. Quantitative effects of the analoguewere seen for K+ fluxes in both wheat and mung bean and forCa2+ fluxes in wheat. The p-FPA reduced transport of K+ in bothspecies, while transport of Ca2+ was unaffected. The implicationsof these results for the ‘two pump hypothesis’ arediscussed. Key words: Triticum aestivum, Vigna radiata, Two pump hypothesis  相似文献   

3.
Siddiqi, M. Y. and Glass, A. D. M. 1987. Regulation of K+ influxin barley: Evidence for a direct control of influx by K+ concentrationof root cells.—J. exp. Bot. 38: 935–947. The kinetics of K+ (86Rb+) influx into intact roots of barley(Hordeum vulgare L. cv. Fergus) seedlings having different combinationsof root and shoot [K+], different growth rates and differentroot:shoot weight ratios were studied. K+ influx was stronglycorrelated with root [K+]; shoot [K+], growth rates, and root:shoot ratios appeared to have little effect on K+ influx. Adetailed study showed that both Vmax and Km for K+ influx wereaffected by root [K+] but not by shoot [K+]. We have suggestedthat factors such as growth rates and root: shoot ratio mayaffect K+ influx indirectly primarily via their influence onroot factors such as root [K+]. We have reiterated that othertypes of kinetic control, e.g. increased or decreased synthesisof ‘carrier systems’, may operate in addition todirect (allosteric?) control of K+ influx by root [K+]. Thenegative feedback signal from root [K+] appeared to be the primeeffector in the regulation of K+ influx. Key words: Barley, K+ influx  相似文献   

4.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

5.
Uptake and partitioning through the xylem and phloem of K+,Na+, Mg2+ , Ca2+ and Cl were studied over a 9 d intervalduring late vegetative growth of castor bean (Ricinus communisL.) plants exposed to a mean salinity stress of 128 mol m–3NaCl. Empirically based models of flow and utilization of eachion within the whole plant were constructed using informationon ion increments of plant parts, molar ratios of ions to carbonin phloem sap sampled from petioles and stem internodes andpreviously derived information on carbon flow between plantsparts in xylem and phloem in identical plant material. Salientfeatures of the plant budget for K+ were prominent depositionin leaves, high mobility of K+ in phloem, high rates of cyclingthrough leaves and downward translocation of K+ providing theroot with a large excess of K+ . Corresponding data for Na+showed marked retention in the root, lateral uptake from xylemby hypocotyl, stem internodes and petioles leading to low intakeby young leaf laminae and substantial cycling from older leavesback to the root. The partitioning of the anionic componentof NaCl salinity, Cl, contrasted to that of Na+ in thatit was not substantially retained in the root, but depositedmore or less uniformly in stem, petiole and leaf lamina tissues.The flow pattern for Mg2+ showed relatively even depositionthrough the plant but some preferential uptake by young leaves,generally lesser export than import by leaf laminae, and a returnflow of Mg2+ from shoot to root considerably less than the recordedincrement of the root. Ca2+ partitioning contrasted with thatof the other ions in showing extremely poor phloem mobility,leading to progressive preferential accumulation in leaf laminaeand negligible cycling of the element through leaves or root.Features of the response of Ricinus to salinity shown in thepresent study were discussed with data from similar modellingstudies on white lupin (Lupinus albus L.) and barley (Hordeumvulgare L.) Key words: Ricinus communis L, potassium, sodium, chloride, calcium, magnesium, phloem, xylem, transport, partitioning, salinity  相似文献   

6.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

7.
White  P. J. 《Annals of botany》1993,72(4):349-358
The development and growth of rye (Secale cereale L. cv. Rheidol)was studied in seedlings grown hydroponically in complete nutrientsolutions containing between 10 and 600 µM K+. The phyllochron(defined as the interval between the appearance of successiveleaves) was used as a developmental timescale to compare plants.The pattern of both shoot and root development was strictlyordered on a phyllochron basis and was unaffected by solutionK+ concentration, with the exception that tillers in plantsgrown at the lowest K+ concentrations were occasionally eithernot initiated or aborted at an early stage of development. However,both the rate of leaf appearance on the main stem and successivetillers and the rate of tiller appearance were slower in plantsgrown at lower K+ concentrations. The rate of leaf appearanceon the main stem was reduced to below 90% of its maximal valueat solution concentrations below about 50 µM K+. Plantrelative growth rate (RGR) was also reduced by lowering theK+ concentration of the nutrient solution and fell to below90% of its maximal value at solution concentrations below about200 µM K+. There was a complex relationship between tissueK+ concentration and the K+ concentration of the nutrient solution,which differed between leaves and root. Leaf K+ concentrationincreased steadily from about 50 µmol g-1 f. wt to about200 µmol g-1 f. wt as solution K+ concentration was increasedfrom 10 to 400 µM. In contrast, root K+ concentrationexhibited a sigmoidal dependence on solution K+ concentration,maintaining a minimal value of approximately 20 µmol g-1f. wt at concentration below 100 µM K+, then increasingprogressively to about 120 µmol g-1 f. wt at a solutionconcentration of 600 µM K+. The 'critical' leaf K+ concentration,i.e. the concentration at which either plant RGR or plant developmentwas reduced 90% of its maximal value, was 86 µmol g-1f. wt for plant RGR and 150 µmol g-1 f. wt for plant development.The 'critical' root K+ concentration was 24 µmol g-1 f.wt K+ for both RGR and development. A decline in tissue K+ concentrationbelow these thresholds reduced plant growth considerably. RootK+ concentration was a sensitive indicator of the K+ statusof the plant with respect to potential growth since plant growthdeclined abruptly as root K+ concentration approached its 'critical'value, whereas plant growth showed a less defined relationshipwith shoot K+ concentration.Copyright 1993, 1999 Academic Press Critical K+ concentration, development, potassium, relative growth rate (RGR), rye, Secale cereale L. cv. Rheidol  相似文献   

8.
This paper reports the effects of low O2 concentration (0–01,0–055, and 0.115mol m–3) in nutrient solutions onK+/Na+ selectivity of growing and mature root tissues of 6-to 8-d-old, intact, wheat (Triticum aestivum cv. Gamenya) seedlings. Increases in anaerobic catabolism and decreases in O2 uptake,K+ uptake and K+/Na+ selectivity were all more pronounced and/oroccurred at higher external O2 concentrations in the apex (0–2mm) than in the expanding tissues (2–4 mm); these growingtissues were, in turn, more affected than the expanded tissuesof the roots (4–12 mm). Selectivity for K+ over Na+ in roots and shoots was particularlysensitive to O2 deficiency. For example, in apical tissues (0–2mm) K + /Na+ selectivity was already reduced at 0.115 mol m–3O2, yet at this O2 concentration there was no effect on eithergrowth or (K+/Na+) uptake. Upon transfer from 0.01 to 0.26 mol m–3 O2, a detailedstudy of the 12 mm root tips showed that 70% of these tips regainedhigh (K+ + Na+) concentrations and K+/Na+ ratios. In contrast,there was no recovery in the remaining 30% of the 12 mm roottips. Net K+ transport to the shoots during the period afterre-aeration was negative for the population as a whole. Theseverity of these effects supports the view that the root tipsand the stele were more susceptible to O2 deficiency than wasthe cortex of the fully-developed root tissues. Key words: Hypoxia, K+/Na+ selectivity, expanded and expanding tissues  相似文献   

9.
Epidermal-cell protoplasts from rye (Secale cereale L.) rootswere voltage-clamped in both the whole-cell and outside-outmembrane-patch modes. Time-dependent inwardly-rectified (IR)and outwardly-rectified (OR) K+-currents were recorded, as wellas a ubiquitous, timeindependent (instantaneous) K+-current. The IR current activated at voltages more negative than —100mVwith two exponentially rising components. The time-constantof the shorter component was voltage-independent, whereas thetime-constant of the longer component was voltage-dependent,increasing as the activating voltage became more negative. TheIR current showed no inactivation. The IR current deactivatedwith a single exponential timecourse. The steady-state IR currentcould be fitted to a Boltzmann function with —135 mV asthe voltage at which the current was half-maximal and a minimalgating charge of 1.93. These parameters were insensitive tochanges in EK. One component of the IR current was K + , butother ions were also permeable. The IR current was inhibitedby extracellular Ca2+ , Ba2+ , Cs+, and TEA+, but was insensitiveto quinine. Single channels with unitary conductances of 56pS and 110 pS (in c.100 mM K+) were recorded at negative voltages. Two OR currents were observed. One had sigmoidal activationkinetics and activated at low positive voltages. The other activatedmore rapidly, with apparently exponential kinetics, at voltages50–100 mV more positive than the first. Neither currentshowed inactivation and deactivation of OR currents followeda double exponential time-course. Unitary-conductances of thechannels mediating these OR currents were 24 pS and 57 pS (inc.100 mM K+), respectively. Only the first type of OR currentwas studied in detail. This current activated with a sigmoidaltime-course, which could be described using a Hodgkin-Huxleyfunction with the activation variable raised to the second power.Its voltage-dependence was modulated in response to changesin EK and analysis of single-channel recordings indicated thatthe channel was K+-selective. The current was inhibited by Ba2+and TEA+, but not Ca2+, Cs+ or quinine. The instantaneous current was selective for monovalent cationsand K+ , Na+ and Cs+ were all permeant. It was inhibited byextracellular quinine and the instantaneous inward K+-currentwas reduced by extracellular Ca2+, Ba2+ and TEA+, as well asby competing permeant monovalent cations. The kinetics and pharmacology of these currents are comparedwith K+-currents across the plasma membrane of protoplasts fromother root-derived cells and with K+ channels in the plasmamembrane of rye roots studied following incorporation into artificial,planar lipid bilayers. Key words: Ionic currents, patch-clamp, pharmacology, potassium, K+, rye, Secale cereale L  相似文献   

10.
The uptake of K+ by plant roots is matched to the demand forK+ for growth. The growing shoot must communicate its K+ requirementto the root. It has been suggested that this might be effectedby varying the amount of K+ retranslocated from the shoot tothe root via the phloem. It is predicted that less K+ is returnedto the roots in K+-deficient plants and that this promotes compensatoryK+ uptake from the external medium. These experiments addressthis hypothesis. Rye (Secale cereale L.) was grown hydroponically in completenutrient solutions containing either 100 aM or 400 µMK+. Plant development, shoot fresh weight (FW) and plant drymatter accumulation did not differ between seedlings grown atthese K+ concentrations. However, root FW was lower in seedlingsgrown in solutions containing 100 µM K+, which resultedin a greater shoot/root FW ratio. Seedlings from both treatmentshad similar shoot K+ concentrations, but the root K+ concentrationof seedlings grown In solutions containing 100 µM K+ wasless than their counterparts grown at 400 µM K+. When assayed at the same K+ concentration, unidirectional K+(86Rb+) influx into 14-d-old seedlings grown with 100 µMK+ in the nutrient solution was greater than that into seedlingsgrown with 400 µM K+ in the nutrient solution, indicatingan increased K+ influx capacity in the former. Furthermore,K+ (86Rb+) influx into seedlings grown and assayed at 100 µMK+ was greater than that into seedlings grown and assayed at400 µM K+. Since net K+ uptake was lower in the seedlingsgrown at 100 µM K+, this indicates a greater unidirectionalK+ efflux from roots in solutions containing 100 µM K+. An empirical model, based on the immobility of calcium in thephloem, was used to describe quantitatively K+ fluxes in seedlings14 d after sowing. As primary data, the composition of xylemsap and the accumulation of elements in root and shoot tissueswere determined. Xylem sap was collected either as root-pressureexudate or from excised roots immersed in nutrient solutionand subjected to a pneumatic pressure of 0.4 MPa. The K:Ca ratioin these saps differed, and led to contrasting conclusions concerningthe effect of K+ nutrition on the recirculation of K+. Basedon the K:Ca ratio in the sap obtained following the applicationof pneumatic pressure, which is thought to resemble that ofintact transpiring plants, it was calculated that the K+ fluxfrom the shoot to the root was higher in seedlings maintainedin solutions containing higher K+ concentrations. This suggeststhat a negative feedback mechanism based on K+ recirculationfrom the shoot to the root via the phloem could be a primarysignal decreasing K+ influx. Key words: K+ influx, K+ recirculation, regulation, root, rye, Secale cereale L  相似文献   

11.
The effects of growth and assay temperature on unidirectionalK+ fluxes in excised roots of rye (Secale cereale cv. Rheidol)were studied using 86Rb+ as a tracer. Both K+ influx to thevacuole, estimated as K+ uptake between 3 and 12 h after transferof unlabelled roots to radioactive solution, and movement ofK+ to the xylem were determined directly. Other fluxes weredetermined on excised roots of plants, which had been labelledwith 86Rb+ since germination, by conventional triple exponentialefflux analysis. When assayed at 20°C, roots of plants previously grown at20°C(WG roots) had lower rates of net K+ uptake than rootsof low temperature-acclimated plants, grown with a temperaturediferential between roots (87°C) and shoots (20°C) eithersince germination (DG roots) or for 3 d prior to experiments(DT roots). This resulted from a greater unidirectional K+ effluxacross the plasma membrane and a reduced K+ flux to the xylemin WG roots, compared to DG or DT roots, rather than a decreasein unidirectional K+ influx or a decrease in the net K+ fluxto the vacuole. Indeed, although WG roots had lower rates ofK+ influx and K+ efflux across the tonoplast at 20°C thanDG or DT roots, roots of plants from all growth temperaturetreatments showed an equivalent net K+ flux to the vacuole. Although all unidirectional K+ fluxes in roots from plants grownunder all temperature regimes were reduced by lowering the temperatureof the root, these fluxes were differentially affected in rootsof plants from contrasting growth temperature treatments. Rapidcooling to 8°C of WG roots resulted in a lower rate of K+influx and a transient increase in K+ efflux across both theplasma membrane and tonoplast, compared to DG and DT roots.Furthermore, since the K+ flux to the xylem was lower in WGroots, the net K+ uptake at 8°C into WG roots was considerablyreduced compared to DG and DT roots. These results suggest thatlow temperature-acclimation of K+ fluxes in rye roots may involvea reduction in the temperature sensitivity of K+ influx anda curtailment of K+ efflux across both the plasma membrane andtonoplast at low temperatures. Key words: K+influx, K+ efflux, low temperature, potassium, rye (Secale cereale cv. Rheidol)  相似文献   

12.
BATES  J. W. 《Annals of botany》1997,79(3):299-309
The mossesBrachythecium rutabulum (Hedw.) B., S. & G. andPseudoscleropodiumpurum (Hedw.) Fleisch. were cultivated for more than 50 d ina growth cabinet with or without weekly drying interludes of24 h. Some plants also received applications of a dilute NPKnutrient solution at weekly intervals. The continuously hydratedplants showed appreciably more biomass production than thosereceiving intermittent desiccation. Desiccation led to somebleaching of the green tissues inB. rutabulum but not inP. purumwhich appeared more desiccation-tolerant. NPK addition causeda further significant growth stimulation in continuously hydratedplants, but not in intermittently desiccatedB. rutabulum. Pseudoscleropodiumpurum showed NPK-induced growth stimulation even when intermittentlydesiccated. Net uptake of N was similar in desiccated and hydratedplants in both species. Considerable net uptake of P and K+occurredin continuously wetB. rutabulum , but uptake was much reducedin intermittently desiccated plants. Net uptake of P and K+byP.purum was similar in desiccated and hydrated samples. IntracellularK+, leaked from the cells during the desiccation treatment,was retained by cation exchange on the negatively charged cellwalls in both species. Levels of intracellular K+and Mg2+inthe new growth were maintained at the expense of the pool ofexchangeable cations. The growth stimulation and the net uptakeof nutrients under intermittent desiccation was greatest whenthe NPK application was made at the start of rehydration, possiblybecause of accentuated uptake in the early stages of recovery.The results support the hypothesis thatP. purum has a lowernutrient requirement thanB. rutabulum and highlight the importanceof continuous hydration for the latter's more productive plantlife strategy. The data also show that considerable new growthof bryophyte tissues is possible without additional nutrientabsorption. Brachythecium rutabulum ; Pseudoscleropodium purum ; mineral nutrition; desiccation; solute leakage; plant life strategies  相似文献   

13.
Using excised low-salt roots of barley and Atriplex hortenslsthe transport of endogenous potassium through the xylem vesselswas studied It was enhanced by nitrate and additionally by sodiumions which apparently replaced vacuolar potassium which wasthen available in the symplasm of root cells for transport tothe shoot Vacuolar Na/K exchange also has been investigatedby measurements of longitudinal ion profiles in single rootsof both species. In Atriplex roots a change in the externalsolution from K+ to Na+ induced an exchange of vacuolar K+ forNa+, in particular in the subapical root tissues and led toincreased K+ transport and loss of K+ from the cortex. In inverseexperiments a change from Na+ to K+ did not induce an exchangeof vacuolar Na+; merely in meristematic tissues Na+—apparentlyfrom the cytoplasm—was extruded in exchange for K+. Inroots of barley seedlings without caryopsis, as in excised roots,a massive exchange of K+ for Na+ was observed in the continuouspresence of external 1.0 mM Na and 0.2 mM K. This exchange alsowas attributed to the vacuole and was most pronounced in theyoung subapical tissues. It did not occur, however, in the correspondingtissues in roots of fully intact barley seedlings. In these,the young tissues retained a relatively high K/Na ratio alsoin their vacuoles. Similarly, contrasting results were obtainedwith intact and excised roots of Zea mays L. Based on theseresults a scheme of the events that lead to selective cationuptake in intact barley roots is proposed. In this scheme acrucial factor of selectivity is sufficient phloem recirculationof K+ by the aid of which K+ rich cortical cells are formednear the root tip. When matured these cells are suggested tomaintain a high cytoplasmic K/Na ratio due to K+ dependent sodiumextrusion at the plasmalemma and due to recovery of vacuolarK+ by Na/K exchange across the tonoplast. Key words: Potassium/Sodium selectivity, Vacuolar exchange, Xylem transport, Hordeum, Zea, Atriplex  相似文献   

14.
A depolarization-activated outwardly-rectifying channel (OR),most likely involved in the passive release of K+ from the rootsymplasm into the stelar apoplast (for subsequent transportto the shoot via the xylem vessels), has been characterizedin the plasma membrane of maize root stelar cells (Roberts andTester, 1995). In the present study, the selectivity of thischannel was further characterized using single channel current-voltagecurves generated using a voltage ramp protocol. This protocolpermitted the accurate and unambiguous measurement of the reversalpotentials of currents resulting from single channel openings.Using the voltage ramp protocol, it was shown that the OR allowsboth K+ efflux and Ca2+ influx at potentials positive of EKand negative of ECa. The OR had a PCa/PK of 1.72–0.21decreasing as extracellular Ca2+ was increased. The permeabilityof the OR for monovalent cations other than K+ was also investigated.In biionic conditions, a relative permeability sequence of was determined (i.e. Eisenman sequenceIV). The physiological implications of the selectivity of theOR are discussed. Key words: Maize roots, K+ channel selectivity, Ca2+ permeation  相似文献   

15.
Volatile anesthetics have been shown to activate various two-pore (2P) domain K+ (K2P) channels such as TASK-1 and TREK-1 (TWIK-related acid-sensitive K+ channel), and mice deficient in these channels are resistant to halothane-induced anesthesia. Here, we investigated whether K2P channels were also potentially important targets of intravenous anesthetics. Whole cell patch-clamp techniques were used to determine the effects of the commonly used intravenous anesthetics etomidate and propofol on the acid-sensitive K+ current in rat ventricular myocytes (which strongly express TASK-1) and selected human K2P channels expressed in Xenopus laevis oocytes. In myocytes, etomidate decreased both inward rectifier K+ (Kir) current (IK1) and acid-sensitive outward K+ current at positive potentials, suggesting that this drug may inhibit TASK channels. Indeed, in addition to inhibiting guinea pig Kir2.1 expressed in oocytes, etomidate inhibited human TASK-1 (and TASK-3) in a concentration-dependent fashion. Propofol had no effect on human TASK-1 (or TASK-3) expressed in oocytes. Moreover, we showed that, similar to the known effect of halothane, sevoflurane and the purified R-(–)- and S-(+)-enantiomers of isoflurane, without stereoselectivity, activated human TASK-1. We conclude that intravenous and volatile anesthetics have dissimilar effects on K2P channels. Human TASK-1 (and TASK-3) are insensitive to propofol but are inhibited by supraclinical concentrations of etomidate. In contrast, stimulatory effects of sevoflurane and enantiomeric isoflurane on human TASK-1 can be observed at clinically relevant concentrations. volatile anesthetics; etomidate; propofol; ion channels  相似文献   

16.
The extent to which Spartina alterniflora Loisel. excluded,secreted or accumulated the major seawater ions (Cl-, SO2-4,Na+, K+, Mg2+, and Ca2+) was investigated under varying salinitytreatments. From a quantitative viewpoint, ion exclusion wasmost prominent and accounted for 91–97% of the theoreticalmaximum ion uptake as a result of transpiration and growth.Of those ions taken up, approximately half was secreted fromthe shoots. Relative to K+, a disproportionate amount of Na+was excluded at the roots and secreted by the shoots. The concentrationwithin the tissues of S. alterniflora did not change with salinitytreatment for the majority of the ions examined, but Na+ wasmore than twice as concentrated at 40 g dm-3 than at lOgdm-3.Calculations of the flux of ions from salt marsh sediments tothe flood water via shoot secretion or stem/leaf turnover indicatethat these processes may be important to the ecology of S. alternifloraas mechanisms that limit the accumulation of salt within theroot zone.  相似文献   

17.
For determination of the effects of polymyxin B, polymyxin E,or ethylenediamine tetra-acetic acid (EDTA) on plant cell membranes,the rates at which three solutes, K+, P1, and sugar, leakedfrom treated tissue culture cell suspensions of Nicotiana tabacumwere measured. The kinetics of leakage from cells treated witheither of the polymyxins was biphasic, whereas kinetics forcells treated with EDTA was monophasic. Only K+ leaked frompolymyxin-treated cells during the first phase, and all threesolutes leaked during the second phase. The slower first phaseis interpreted as leakage of K+ from the Donnan free space andcytoplasm, and the faster second phase as the leakage of solutesfrom the vacuole. The monophasic kinetics of EDTA treatmentindicated that solutes were leaking simultaneously from cytoplasmand vacuole. Of the divalent cations tested, only Ca++ and Mn++counteracted the effects of polymyxin and EDTA. Ca++ even restoredP1 and sugar uptake. Addition of Mg++ or Sr++ to polymyxin-treatedcells did not stop solute leakage but actually enhanced theleakage rates. A model is presented that suggests that polymyxinor EDTA induces solute leakage by forming pores in plant cellmembranes. The effects of divalent cations on membranes oncethe pores are formed are also discussed. Key words: Polymyxin, EDTA, Nicotiana tabacum, Solute leakage  相似文献   

18.
The effects of Ca2+ in the external medium on intact mung beanroots under high NaCl stress were investigated. With increasingexternal concentrations of NaCl, mung bean roots showed suppressionof elongation and a decrease in the intracellular concentrationof K+. Addition of Ca2+ to the external medium alleviated theinhibition of root elongation under the high NaCl stress andmaintained a high intracellular concentration of K+ in the elongatingregion of the roots. This counter effect of Ca2+ against theNaCl stress on roots was correlated with the ratio of [Ca2+]/[Na+]2in the external medium. A value above 5.0 ? 10–4 mM–1resulted in almost complete recovery of root elongation undervarious high concentrations of NaCl. Root elongation for 24h under NaCl stress was correlated with the extent to whichthe intracellular concentration of K+ was in excess of 10 mM.Maintenance of an adequate concentration of K+ in root cellsis essential for root elongation under salt stress. These findingsindicate that Ca2+ prevents the leakage of intracellular K+and thereby supports the elongation of roots under salt stress. (Received November 13, 1989; Accepted June 5, 1990)  相似文献   

19.
It was confirmed that osmotic adjustment occurred in young intactmung bean (Vigna mungo (L.) Hepper) seedlings exposed to highosmotic pressure stress. Root growth was not affected by osmoticpressure of less than 200 mOsra in the external solution, althoughhypocotyl growth was conspicuously reduced. Under this moderateosmotic stress, intracellular K+ concentration, [K+]i, increaseddramatically during the osmotic adjustment in all the regionsof the root, but the intracellular Cl concentration,[Cl]i, increased only in the aged mature region of theroot (28–33 mm from the root tip). About a half of theintracellular osmotic pressure in the aged mature region ofthe root could be ascribed to the contributions of [K+]i and[Cl]i, but in the hypocotyl, [K+]i only contributed slightlyto the osmotic adjustment. (Received June 18, 1986; Accepted August 26, 1986)  相似文献   

20.
JUNG  K.-D.; LUTTGE  U. 《Annals of botany》1980,45(3):339-349
Fusicoccin (FC) inhibited net excretion of Cl by theglands of the pitchers of the carnivorous plant Nepenthes hookeriana;of Na+ and Cl by the salt glands of the halophytes Limoniumvulgare and L. pectinatum and of K+ in the nectar of Acer platanoidesflowers. It had no effect on K+ elimination with nectar of Impatienswalleriana (extrafloral nectaries) and Abutilon striatum. Abscisicacid (ABA) stimulated net excretion of K+ and Cl in Nepenthesand of Na+ and Cl in Limonium but had no effects on K+in nectar. Thus, FC and ABA had opposing effects on ion excretionby the salt eliminating glands of Limonium and Nepenthes. Bothcompounds, however, had similar effects on sugar secretion ofnectary glands which was either inhibited or unaffected by FCand ABA. It is suggested that the effects of FC and ABA on ion excretionby gland cells could be reconciled with literature showing FC-stimulationand possible ABA-inhibition of proton pumps at the plasmalemmaof plant cells. Nepenthes hookeriana, Limonium vulgare, Limonium pectinatum, Acer platanoides, salt-glands, nectaries, excretion, fusicoccin, abscisic acid, proton pump  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号