首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and convenient method was established for analysis of the N-linked carbohydrate chains of glycoproteins on nitrocellulose sheets. Proteins were separated by polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets, reacted with peroxidase-coupled lectins, and detected by color development of the enzyme reaction. Four glycoproteins having N-linked oligosaccharide chains were used as test materials: Taka-amylase A (which has a high-mannose-type chain), ovalbumin (high-mannose-type chains and hybrid-type chains), transferrin (biantennary chains of complex type), and fetuin (triantennary chains of complex type and O-linked-type chains). Concanavalin A interacted with Taka-amylase A, transferrin, and ovalbumin but barely interacted with fetuin. After treatment of the glycoproteins on a nitrocellulose sheet with endo-beta-N-acetylglucosaminidase H, transferrin reacted with concanavalin A but Taka-amylase A and ovalbumin did not. Wheat germ agglutinin interacted with Taka-amylase A but not ovalbumin; therefore, they were distinguishable from each other. Fetuin and transferrin were detected by Ricinus communis agglutinin or peanut agglutinin after removal of sialic acid by treatment with neuraminidase or by weak-acid hydrolysis. Erythroagglutinating Phaseolus vulgaris agglutinin detected fetuin and transferrin. Thus, the combined use of these procedures distinguished the four different types of N-linked glycoproteins. This method was also applied to the analysis of membrane glycoproteins from sheep red blood cells. The terminally positioned sugars of sialic acid, alpha-fucose, alpha-galactose, and alpha-N-acetylgalactosamine were also detected with lectins from Limulus polyphemus, Lotus tetragonolobus, Maclura pomifera, and Dolichos biflorus, respectively.  相似文献   

2.
Although lectins have previously been used to identify specific cell types in the kidney and various other tissues, the proteins labeled were not identified. We hypothesized that fluorescently labeled lectins could provide a useful tool for direct labeling of membrane-associated glycoproteins. Protein fractions from Madin-Darby canine kidney (MDCK) cells were exposed to a panel of 16 fluorescently labeled lectins to identify suitable lectin-protein pairs. Peanut agglutinin (PNA) selectively bound a 220-240 kDa O-linked glycoprotein with a slightly acidic isoelectric point, while Sambucus nigra agglutinin (SNA) labeled a 130 kDa glycoprotein with a highly acidic isoelectric point. Both proteins were readily labeled by lectins applied to the apical surface of living confluent cells. The proteins were isolated by lectin affinity columns and identified by mass spectrometry. Peptides from the PNA-binding protein shared molecular weight and amino acid composition with fibronectin. Fragments of the SNA-binding protein showed amino-acid identity with peptides from beta1 integrin. The identities of these proteins were validated by Western blotting. Binding of PNA to a 220 kDa protein was inhibited by an anti-fibronectin antibody, and binding of a 130 kDa protein by SNA was diminished by an anti-beta1 integrin antibody. We conclude that PNA and SNA can be used as specific markers for fibronectin and beta1 integrin, respectively, in MDCK cells.  相似文献   

3.
The nature of the receptors for four lectins specific for -galactosyl residues was examined in human lymphocytes. The cells were fixed with formaldehyde to avoid subsequent cell lysis, treated with pronase, sialidase and organic solvents, and the binding of the lectins to the treated cells measured. The results show that the bulk of the receptors for peanut agglutinin (PNA) and ricin (RCA 60) are glycoproteins, whereas those for Ricinus communis agglutinin (RCA 120) and soybean agglutinin (SBA) are distributed nearly equally between membrane glycoproteins and glycolipids.  相似文献   

4.
The functional domains of the glycoproteins of the pig zona pellucida have been analysed using lectin binding, peptide mapping, and immunoblotting in conjunction with analysis by high-resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and protein detection with the silver-based colour stain. Two of the pig zona pellucida glycoproteins identified in 2D-PAGE were differentially proteolysed within the intact matrix by a variety of enzymes. This proteolysis of specific proteins, however, did not affect the suprastructure of the matrix, or inhibit spermatozoa from adhering to the surface of the zona pellucida. The major glycoprotein appears to be involved in the structural maintenance of the zona pellucida because dissolution of the matrix correlated with proteolysis of this glycoprotein by proteinase K. These glycoproteins were further evaluated by lectin blotting with Ricinus communis agglutinin (RCA) and wheat germ agglutinin (WGA) before and after proteolysis of zona pellucida with trypsin. The lectins bound to all charge species of the three major zona pellucida glycoproteins. Only the most acidic components of the major glycoprotein family, which are not extensively digested, were recognized by these lectins after proteolysis. These studies provide evidence that the major glycoprotein family I of the pig zona pellucida is primarily responsible for maintaining the integrity of the matrix.  相似文献   

5.
Histological and histochemical methods have been employed to study the formation and growth of the exoskeleton in relation to the moulting cycle of the crab Menippe rumphii (Fabricius). In the premoult condition the epidermal cells secrete a two-layered cuticle. Later these layers are widened by the secretions coming from the reserve cells, tegumental glands, and the Leydig cells. The fully formed cuticle of the intermoult crab is divisible into four layers, epicuticle, exocuticle, mesocuticle, and endocuticle.Histochemical observations on different cells have revealed that the tegumental glands secrete both neutral and acid mucopolysaccharides. The reserve cells are positive to PAS, BPB, Sudan Black B and Alizarin Red S techniques indicating the presence of carbohydrates, proteins, lipids, and mineral calcium. The Leydig cells are loaded with enzymes, including alkaline phosphatase, acid phosphatase, lipase, and phenoloxidase. Other histochemical tests have been employed to investigate the formation of different layers of the cuticle.  相似文献   

6.
A cuticular glycosidase with characteristics of N-acetyl-β- -hexosaminidase (HexNAcase) was identified in post-ecdysial crab cuticle. Its appearance coincided with changes in cuticular glycoproteins and the onset of mineralization. To test if HexNAcase might be the causative agent in the alteration of the glycans and initiation of calcification, newly molted crab cuticle was treated with exogenous HexNAcase. Treating cuticular extracts from crabs at 0 h post-ecdysis with exogenous HexNAcase mimicked those changes observed in vivo. Specifically, the enzyme decreased the concanavalin A affinity of an 83-kDa glycoprotein that binds to calcite crystals in vitro. Treating pieces of 0 h post-ecdysial cuticle with HexNAcase rendered them capable of nucleating calcite in vitro (similar to 5 h post-ecdysial cuticle), while untreated, 0 h controls remained uncalcified. The data imply a role of the cuticular HexNAcase-like enzyme in the initiation of calcite nucleation in the newly formed exoskeleton.  相似文献   

7.
Swainsonine and swainsonine-containing plants produce biochemical and neurological changes in several mammalian species. The toxin is a potent inhibitor of liver lysosomal alpha-D-mannosidase and Golgi mannosidase II. The inhibition of the latter enzyme causes the production of abnormal glycoproteins containing hybrid oligosaccharides instead of complex types in a variety of cultured cells. In view of the widespread occurrence and biological importance of N-linked glycoproteins in the central nervous system, we initiated studies to determine the structure of oligosaccharides in glycoproteins prepared from the brain of control, swainsonine-fed, and locoweed-fed animals. The results presented here indicate that the feeding led to alteration in the structure of brain glycoproteins. Over 25% of the glycoproteins which presumably contained complex-type oligosaccharides were modified and now contained hybrid oligosaccharides. The structure of the N-linked oligosaccharide (glycopeptide) was established by (a) studying the binding properties of the glycopeptide to immobilized lectins of known sugar specificity, and (b) comparing the size of the glycopeptide before and after treatment with exo- and endoglycosidases. The production of hybrid oligosaccharides occurred despite the apparent absence of mannosidase II in brain. The relationships of the altered structure of brain glycoproteins, accumulation of mannose-rich oligosaccharides in the brain, and abnormal behavior of the animals administered swainsonine or locoweed are discussed.  相似文献   

8.
Lysosome membranes were isolated, and membrane proteins and glycoproteins were characterized by electrophoresis and lectin probes of nitrocellulose blots. Rat liver lysosomes were isolated on a discontinuous metrizamide gradient and characterized by subcellular marker enzymes. Lysosomes were lysed by hypotonic freeze-thaw shock and membranes were isolated. The release of beta-N-acetylhexosaminidase was used to monitor the disruption of the lysosomes. Proteins of lysosome membranes were analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis. There were at least 30 proteins present and several were glycoproteins. Nitrocellulose blots of lysosome membrane proteins were probed with a panel of lectins, including concanavalin A, Ulex europaeus agglutinin I, Lotus tetragonolobus agglutinin, soybean agglutinin, peanut agglutinin, and Ricinus communis agglutinin I. Peanut agglutinin and Ricinus communis agglutinin I binding were also examined after neuramidase treatment of lysosome membranes. Ten proteins bound concanavalin A, and neuraminidase pretreatment revealed six proteins that bound Ricinus communis agglutinin I and three proteins that bound peanut agglutinin. The other lectins tested did not bind to any lysosome membrane proteins. These results indicate that lysosome membranes contain several glycoproteins, some of which contain sialic acid terminating complex oligosaccharides.  相似文献   

9.
Platelet proteins (0.5-5 micrograms) were electrophoresed in a one-dimensional or an unreduced-reduced, two-dimensional sodium dodecyl sulfate gel system. The separated proteins were then transferred electrophoretically to nitrocellulose and reacted with peroxidase-conjugated lectins. Visualization of specific glycoproteins which bound the lectins was made by the chromogenic reaction catalyzed by peroxidase utilizing 3,3'-diaminobenzidine as the substrate. Wheat germ agglutinin specifically reacted with and allowed the visualization of glycoprotein Ib. Peanut agglutinin also specifically stained glycoprotein Ib after treatment of the nitrocellulose transferred proteins with neuraminidase. Ricinus communis agglutinin I stained thrombospondin, a 260 kDa protein, and factor VIII. Concanavalin A stained mainly glycoproteins IIb, III, IV, and V. Glycoproteins Ia, Ic, IIa, and other minor glycoproteins could be separated by unreduced-reduced, two-dimensional gel electrophoresis and were stained weakly with wheat germ agglutinin conjugates. These techniques were found to be reproducible as well as easily applied to the analysis and identification of platelet glycoproteins, particularly when dealing with a limited amount of platelets.  相似文献   

10.
A strain of Balb/C mice carrying a lysosomal storage disorder exhibits metabolic and phenotypic abnormalities similar to patients with sphingomyelin-cholesterol lipidoses type II (i.e., Niemann-Pick C and D). Their foamy cells, which belong to the reticuloendothelial system, stained intensely by periodate-Schiff (PAS) reagent and were resistant to predigestion with diastase. To identify the chemical nature of the PAS-positive storage material, we applied lectin histochemistry and biochemical methods. Paraffin embedded sections, and delipidated frozen tissue sections, were treated with biotinylated lectins and localized with avidin-biotin-peroxidase complex. Araldite-embedded semithin sections were incubated with biotinylated lectins followed by avidin-gold and were enhanced with silver. By both histochemical methods the affected foamy cells stained positively as follows: Concanavalia ensiformis agglutinin, Datura stramonium agglutinin, Griffonia simplicifolia-I, Lens culinaris agglutinin, peanut agglutinin, Ricinus communis agglutinin-I, wheat germ agglutinin (WGA), and succinylated-WGA. Biochemical analysis of liver extracts complemented the histochemical data and demonstrated accumulation of glycoproteins containing polylactosaminoglycans in affected mice. Our findings indicate that the storage material in NCTR-Balb/C mice is heterogeneous. The lipids that are extracted by organic solvents during the histologic preparations mask the occurrence of polylactosaminoglycan containing glycoproteins in native frozen sections.  相似文献   

11.
Novikoff hepatocellular carcinoma cells were radioiodinated by a cell surface-specific method using lactoperoxid ase/125I. The iodinated proteins were solubilized in 0.5% Nonidet P-40 and subjected to affinity chromatography on Sepharose-conjugated lectins (Ricinus communis agglutinins I or II, soybean agglutinin, concanavalin A, or wheat germ agglutinin) and analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Almost all the iodinated proteins bound to one or more of the Sepharose-conjugated lectins, presumptive evidence that these peptides are glycosylated. Lectin affinity chromatography resolved defined subsets of iodinated glycoproteins and suggested that certain glycoproteins could be fractionated on the basis of heterogeneity of their heterosaccharide moieties. Incubation of the iodinated cells with neuraminidase resulted in increased binding of iodinated proteins to Sepharose-conjugated Ricinus communis agglutinins I and II and soybean agglutinin and decreased binding to Sepharose-conjugated wheat germ agglutinin. Binding of iodinated proteins to concanavalin A was unaffected by neuraminidase treatment of the cells. These studies demonstrate the utility of lectins for the multicomponent analysis of plasma membrane proteins.  相似文献   

12.
Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheatgerm agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(beta 1-3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosaccharide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

13.
Glycoproteins from luminal fluid of the mouse cauda epiciidymidis have been compared with glycoproteins from Triton X-100 extracts of mouse spermatozoa from varying regions of the epididymis, using lectins with specific affinity for different sugar residues. Concanavalin A recognizes 11 glycocomponents on Western blots of fractionated caudal fluid; wheat germ agglutinin (WGA) binds 12 proteins; Ulex europaeus agglutinin (UEA) binds seven; and Dolichos biflorus agglutinin (DBA) recognizes nine. Several of these glycoproteins display an affinity for more than one lectin, indicating a diversity in their exposed carbohydrate residues; whereas other proteins bind only one of the four lectins used. The results also show that some glycoproteins exhibit a higher affinity for particular lectins. Eight glycoproteins of similar mobility and lectin-binding characteristics are detected in Triton X-100 extracts of spermatozoa from different regions of the epididymis and in caudal fluid. The lectin affinity of some proteins appears or increases in spermatozoa from distal epididymal regions (54 kD, 32 kD), whereas the lectin affinity of others decreases (29 kD, 40 kD). There are differences in lectin affinities between proteins in sperm extracts and in caudal fluid. Some proteins show an affinity for three or four lectins in caudal fluid, but proteins of similar electrophoretic mobility in sperm extracts bind only one or two of the lectins. These data show that glycoproteins of similar mobility are present in caudal fluid and in Triton-X-100 sperm extracts, implying a potential interaction between caudal fluid components and epididymal sperm.  相似文献   

14.
Hen eggs represent an easily available and inexpensive source of glycoproteins expressing a variety of sugars. Egg glycoproteins might therefore be exploited to purify by affinity chromatography carbohydrate-binding proteins (lectins) with different specificities. A method to generate an affinity matrix from hen eggs is described. The matrix was assayed for its ability to purify in a single step biologically active phytohemagglutinin, wheat germ agglutinin, lentil lectin, and peanut agglutinin. Milligrams of purified lectins per gram of matrix was obtained, with the only exception of peanut agglutinin that was not efficiently retained into the affinity column. Hen egg chromatography is a relatively simple, fast, and reproducible method to purify high amount of plant lectins.  相似文献   

15.
A 58-kDa Golgi protein (gp58) was previously identified and found to be concentrated in cis Golgi cisternae in several cell types (Saraste, J., Palade, G.E., and Farquhar, M.G. (1987) J. Cell Biol. 105, 2021-2029). In this study the protein was partially purified from rat pancreas and mouse myeloma cells in order to characterize its oligosaccharides. It migrated on sodium dodecyl sulfate-polyacrylamide gels as a 57-58-kDa doublet under reducing conditions or as a single approximately 116-kDa band under nonreducing conditions. Pancreatic gp58 was susceptible to alpha-N-acetylgalactosaminidase digestion and it bound concanavalin A, Helix pomatia, Dolichos biflorus, soybean agglutinin, and Bauhinia purpurea lectins, but not Ricinus communis agglutinin or lectins from Griffonia simplicifolia-1, Arachis hypogaea, and Limulus polyphemus. It bound Ricinus communis agglutinin after galactosylation with GlcNAc galactosyltransferase. These data demonstrate that pancreatic p58 contains immature N-linked moieties with nonreducing terminal GlcNAc residues as well as the initiating GalNAc of O-linked glycoproteins. Myeloma gp58 was sensitive to endo-beta-N-acetylglucosaminidase H, and oligosaccharide analysis of its [3H]glucosamine-labeled glycopeptides indicated that it also contained immature N-linked glycans. Some of the latter consist of high mannose chains (high affinity for concanavalin A, endo-beta-N-acetylglucosaminidase H-sensitive), but the predominant (95%) species are neutral tri- or tetraantennary N-linked chains containing GlcNAc (no binding to concanavalin A). Glycopeptides from biosynthetically labeled myeloma cells did not contain detectable base labile oligosaccharides, indicating that unlike pancreatic p58, myeloma gp58 may not be an O-linked glycoprotein. Neither pancreatic nor myeloma gp58 contained terminally processed oligosaccharides, indicating that gp58 has not been modified by trans-Golgi glycosyltransferases. Thus, the oligosaccharide content of gp58 is consistent with the assumption that this protein is retained in the cis Golgi cisternae during biosynthesis instead of being transported across the Golgi stacks and targeted back to the cis Golgi from the trans side.  相似文献   

16.
In the lamprey, adrenocorticotropin (ACTH) and melanotropins (MSHs) are produced from two distinct precursors, proopiocortin (POC) and proopiomelanotropin (POM). Both POC and POM have been suggested to be glycoproteins. The present study aimed to demonstrate glycoconjugates in ACTH and MSH cells in the pituitary of adult sea lampreys (Petromyzon marinus) by means of a lectin histochemistry. A total of 19 kinds of lectins were tested. ACTH cells were distributed in both the rostral pars distalis and the proximal pars distalis, and were stained positively with N-acetylglucosamine binding lectins (i.e., succinylated wheat germ agglutinin), N-acetylgalactosamine binding lectins (i.e., soybean agglutinin), D-mannose binding lectins (i.e., Lens culinaris agglutinin), and D-galactose binding lectins (i.e., Erythrina cristagall lectin). MSH cells were distributed in the pars intermedia, and were stained with N-acetylgalactosamine binding lectins (i.e., Dolichos biflorus agglutinin), D-mannose binding lectin (Pisum sativum agglutinin) and D-galactose binding lectins (i.e., peanut agglutinin). These results suggested that ACTH and MSH cells produce different types of glycoconjugates which may be attributed to the difference in glycoconjugate moieties between the precursor proteins, POC and POM.  相似文献   

17.
Summary The present study utilized biochemical and immuno-and lectin-histochemical methods to demonstrate solubility and retention of mineral-binding non-collagenous proteins in rat midshaft subperiosteal bone during EDTA demineralization. A monoclonal antibody (9-A-2) specific for chondroitin 4-sulphate and dermatan sulphate and wheat germ agglutinin (WGA) specific forN-acetyl-d-glucosamine,N-acetylneuraminic acid, andN-acetyl-d-galactosamine were used. Bone proteins were extracted from fresh unfixed or aldehyde-fixed specimens with a three step extraction procedure, 4 M guanidine HCl (GdnCl), aqueous EDTA without GdnCl, followed by GdnCl. For comparison with the second extraction step, ethanolic trimethylammonium EDTA (ethanolic EDTA) was substituted for aqueous EDTA. Based on protein staining and Western blot analysis of SDS-polyacrylamide gel electrophoresis of each extract using 9-A-2 and WGA, retention of mineral-binding proteins extractable from fresh specimens with aqueous EDTA was greatly increased in tissue when ethanolic EDTA was used. Their retention was even greater with prior aldehyde fixation. Maximum retention with no detectable solubility of 9-A-2 and WGA reactive proteins was obtained after ethanolic EDTA extraction of aldehyde-fixed specimens, which concomitantly provided the strongest immuno- and lectin staining. These results indicate that this combined method dramatically improves retention of PGs and glycoproteins during demineralization of bone tissues and provides the best method for localizing these glycoconjugates.  相似文献   

18.
After separation of whole proteins of chick neural retina by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS), a number of glycoproteins can be detected by staining the gels with 125I-labeled wheat germ agglutinin (WGA) and other lectins. The glycoprotein patterns show both quantitative and qualitative changes between days 7 and 13 of development. Some of these glycoproteins can be separated by chromatography on columns of insolubilized lectins. These observations suggest that purification of some of these glycoproteins identified by staining with radioactive lectins would yield retinal antigens which may be specific for developmental stage and cell type.  相似文献   

19.
We have tested the application of high-mannose-binding lectins as analytical reagents to identify N-glycans in the early secretory pathway of HeLa cells during subcellular fractionation and cytochemistry. Post-endoplasmic reticulum (ER) pre-Golgi intermediates were separated from the ER on Nycodenz–sucrose gradients, and the glycan composition of each gradient fraction was profiled using lectin blotting. The fractions containing the post-ER pre-Golgi intermediates are found to contain a subset of N-linked α-mannose glycans that bind the lectins Galanthus nivalis agglutinin (GNA), Pisum sativum agglutinin (PSA), and Lens culinaris agglutinin (LCA) but not lectins binding Golgi-modified glycans. Cytochemical analysis demonstrates that high-mannose-containing glycoproteins are predominantly localized to the ER and the early secretory pathway. Indirect immunofluorescence microscopy revealed that GNA colocalizes with the ER marker protein disulfide isomerase (PDI) and the COPI coat protein β-COP. In situ competition with concanavalin A (ConA), another high-mannose specific lectin, and subsequent GNA lectin histochemistry refined the localization of N-glyans containing nonreducing mannosyl groups, accentuating the GNA vesicular staining. Using GNA and treatments that perturb ER–Golgi transport, we demonstrate that lectins can be used to detect changes in membrane trafficking pathways histochemically. Overall, we find that conjugated plant lectins are effective tools for combinatory biochemical and cytological analysis of membrane trafficking of glycoproteins.  相似文献   

20.
In sea stars, adhesion takes place at the level of a multitude of small appendages, the tube feet. It involves the secretion of an adhesive material which, after tube foot detachment, remains on the substratum as a footprint. It was previously reported that the two main organic components of this material are proteins and carbohydrates. The carbohydrate moiety of the adhesive secretion of Asterias rubens was investigated using a set of 16 lectins which were used on sections through tube feet, on footprints, and on the proteins extracted from these footprints. After gel electrophoresis, these proteins separate into eight protein bands which were named sea star footprint proteins (Sfps). Eleven lectins label the tube foot epidermis at the level of the adhesive cells, four react with footprints, and eight with two of the extracted footprint proteins, which are therefore classified as glycoproteins. Sfp-290 appears to bear mostly N-linked oligosaccharides and Sfp-210 principally O-linked oligosaccharides. The outer chains of both glycoproteins enclose galactose, N-acetylgalactosamine, fucose, and sialic acid residues. Another part of the carbohydrate fraction of the footprints would be in the form of larger molecules, such as sialylated proteoglycans. These two types of glycoconjugates are presumably key components of the sea star temporary adhesive providing both cohesive and adhesive contributions through electrostatic interactions by the polar and hydrogen-bonding functional groups of their glycan chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号