首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary More than half of the Japanese patients with 2,8-dihydroxyadenine urolithiasis only partially lack adenine phosphoribosyltransferase (APRT), while all the Caucasian patients with the same disease completely lack the enzyme. APRT activities in healthy heterozygotes for the complete APRT deficiencies were at the same levels as the Japanese patients, and simple enzyme assay does not distinguish between these two conditions. We have previously shown, using viable T-cells, that the enzyme was non-functional in the cells from the Japanese patients although they contain considerable APRT activities in the cell extracts. In the present investigations, we devised a rapid method using erythrocytes for the diagnosis of partial APRT deficiencies accompanied by severe impairment in adenine metabolism causing 2,8-dihydroxyadenine lithiasis. Thus, erythrocytes from three different families with 2,8-dihydroxyadenine urolithiasis associated with partial APRT deficiencies incorporated only minimal amounts of radioactive adenine, while normal erythrocytes incorporated significant amounts. These data indicate that severe impairment in adenine metabolism is shown not only in viable T-cells but also in viable erythrocytes. The present procedures provide a rapid method suitable for routine clinical use for the diagnosis of partial APRT deficiencies causing 2,8-dihydroxyadenine lithiasis.  相似文献   

2.
Summary 2,8-Dihydroxyadenine urolithiasis associated with partial deficiencies of adenine phosphoribosyltransferase (APRT) has been found only among Japanese families. All Caucasian patients with the same lithiasis are completely deficient in this enzyme. Partially purified APRT from one of the Japanese families with the lithiasis associated with a partial deficiency of APRT had a reduced affinity for 5-phosphoribosyl-1-pyrophosphate (PRPP). In the present investigations, we have shown that this characteristic is common in mutant enzymes from all the four separate Japanese urolithiasis families associated with partial APRT deficiencies so far tested. The mutant enzymes also had several other characteristics in common including increased resistance to heat in the absence of PRPP and reduced sensitivity to the stabilizing effect of PRPP. These data suggest that these families have a common mutant allele (APRT * J) at the APRT gene locus.  相似文献   

3.
1. Both normal cells and cells deficient in hypoxanthine-guanine phosphoribosyltransferase (HPRT) are able to produce adenine and guanine nucleotides from aminoimidazole carboxamide (AICA) or its ribonucleoside (AICAR), but not from formaminoimidazole carboxamide ribonucleoside (FAICAR). 2. The level of purine nucleotide production from AICA in HPRT- cells is at least equal to the production of purine nucleotides from hypoxanthine in normal cells. 3. The concentration of AICA or AICAR at which nucleotide production was half-maximal was between 30 and 100 microM in various cell lines. 4. Adenosine kinase is required to convert AICAR to its nucleotide; adenine phosphoribosyltransferase is required to convert AICA to its nucleotide. Cells lacking either of these enzymes are unable to produce purine nucleotides from the respective precursor. 5. Purine production from AICAR in HPRT- cells is not greatly increased by the addition of formate, folate or leucovorin.  相似文献   

4.
Mouse teratocarcinoma stem cells deficient in activity of adenine phosphoribosyltransferase (APRT; EC 2.4.2.7) were obtained in order to have this marker in developmentally versatile cells. Mutagenized stem-cell cultures were selected for resistance to 8-azaadenine and four clonal cell lines were isolated. Three had severe deficiencies of APRT activity (7% or less of wild type) and one had a moderate reduction (73%). The enzyme in the latter clone was found to be an electrophoretic variant with slightly less anodal migration than the wild-type enzyme. Each clone remained stably APRT-deficient for at least 3 1/2 weeks, after subcutaneous inoculation, in the absence of the selective agent. The tumors formed from the inocula comprised a variety of differentiated tissues and thus showed persistence of stem-cell developmental pluripotency despite mutagenesis and selection. All mutants also retained the quasinormal karyotype (X/O sex chromosomal constitution, trisomy-19) of the parent line. These lines are appropriate for such uses as production (by blastocyst injection) of mouse models of the human genetic deficiency and for foreign-gene transfer, via teratocarcinoma cells, into mice.  相似文献   

5.
We have studied adenine phosphoribosyltransferase (APRT) in the hemolysates from the families of 2,8-dihydroxyadenine urolithiasis associated with partial deficiency of APRT (the Japanese type) and complete deficiency of APRT (the null type). The APRT in the control subjects was found to be heat-stable at the physiological concentration of phosphoribosylpyrophosphate (PRPP), which was close to the value of its Km for PRPP. The APRT in the Japanese type showed 10 times higher Km values for PRPP and needed a comparably increased level of PRPP for stability in vitro. No change in red cell PRPP was found in the Japanese type of APRT deficiency. The content of APRT enzyme protein was decreased in the hemolysates of the Japanese type, probably due to its lability at the level of PRPP present in the cells. The heterozygote of the null type also had labile enzyme molecules at the physiological PRPP concentration.  相似文献   

6.
Spontaneous and ethyl methanesulfate induced mutants of Saccharomyces cerevisiae, with partial and complete deficiency of adenine phosphoribosyltransferase (APRT, EC 2.4.2.7), were isolated by selection for resistance to 8-azaadenine. Matings between totally deficient mutants and tester strain resulted in diploid heterozygotes that were sensitive to azaadenine. Upon sporulation and tetrad analysis, azaadenine resistance (and APRT deficiency) segregated as expected for a single Mendelian gene. Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) activity in the mutants was similar to that in the wild-type cells. There was no detectable activity of adenine aminohydrolase (EC 3.5.4.2) in the wild-type or mutant cells.  相似文献   

7.
We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis.  相似文献   

8.
Adenine phosphoribosyltransferase mutants in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
Mutants of Saccharomyces cerevisiae deficient in adenine phosphoribosyltransferase (A-PRT, EC 2,4,2,7) have been isolated following selection for resistance to 8-azaadenine in a prototrophic strain carrying the ade4-su allele of the gene coding for amidophosphoribosyltransferase (EC 2,4,2,14). The mutants were recessive and defined a single gene, apt1. They did not excrete purine when combined with ade4+. The mutants appeared to retain some A-PRT activity in crude extracts, and strains of the genotype ade2 apt1 responded to both adenine and hypoxanthine. Mutants deficient in adenine aminohydrolase (EC 3,5,4,2) activity, aah1, and hypoxanthine:guanine phosphoribosyltransferase (EC 2,4,2,8) activity, hpt1, were used to synthesize the genotypes apt1 hpt1 aah+ and apt1 hpt+ aah1. The absence of A-PRT activity in strains with these genotypes confirmed the hypothesis that the residual A-PRT activity of apt1 mutants was due to adenine aminohydrolase and hypoxanthine:guanine phosphoribosyltransferase acting in concert.  相似文献   

9.
A metabolomic analysis of plasma amino acids and acylcarnitines was applied to four disorders of nucleotide metabolism. Multivariate analysis gave score plots that show segregation of hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase deficient plasma from controls with equivocal results for adenosine deaminase and dihydropyrimidine dehydrogenase deficiencies. Loadings plots revealed the principal metabolites responsible for the discrimination between these classes. There were increases for HPRT in C4-, C6-, and C3-DC (malonyl)-carnitines, and decreased serine. For APRT there were increases in C4- to C10- and C3-DC to C6-DC-carnitines, urea, 1-methylhistidine, 3-methylhistidine, and decreased tryptophan. For ADA deficiency there were increases in C4- and C6-carnitines, taurine, and isoleucine.  相似文献   

10.
11.
The significance of partial deficiency of erythrocyte adenine phosphoribosyltransferase (APRT), reported in a number of subjects with gout, has been investigated by studying its incidence in 700 normal blood donors. Three clearly deficient subjects were found, an incidence not significantly different from that in patients with abnormalities of urate metabolism. A new assay method for APRT is described in which an erythrocyte lysate is incubated with adenine and phosphoribosylpyrophosphate (PRPP) for a given time; both hemoglobin and adenine nucleotide (AMP) are then precipitated with lanthanum phosphate; the change in absorbance of adenine at 260 nm reflects the extent of its conversion to AMP by APRT.This work was supported by the National Health and Medical Research Council of Australia.  相似文献   

12.
A variant of the hypoxanthine-guanine phosphoribosyltransferase deficient, and adenine phosphoribosyltransferase deficient mouse A9 cell line has been obtained by selecting cells which are resistant to 6-azauridine. These cells are not only resistant to 6-azauridine (5 × 10−4 M), but also to adenosine (10−3 M). Resistance persists indefinitely even in the absence of both compounds. The resistant cells are killed by 5-fluorouridine (10−6 M), indicating that the part of the salvage pathway for pyrimidine ribonucleotide biosynthesis which is relevant to the action of 6-azauridine is intact. The heritable change producing concurrent resistance to 6-azauridine and adenosine probably involves the de novo pyrimidine biosynthetic pathway.  相似文献   

13.
Summary Adenine phosphoribosyltransferase (APRT) deficiency causing 2,8-dihydroxyadenine urolithiasis and renal failure is present at a high frequency among the Japanese but not other ethnic groups. A special type of mutant allele, designated APRT*J, with a nucleotide substitution at codon 136 from ATG (Met) to ACG (Thr) is carried by approximately 79% of all Japanese 2,8-dihydroxyadenine urolithiasis patients. We analyzed mutant alleles of 39 APRT deficient patients using a specific oligonucleotide hybridization method after in vitro amplification of a part of the genomic APRT sequence. We found that 24 had only APRT*J alleles. Determination of the haplotypes of 194 APRT alleles from control Japanese subjects and of the 48 different APRT*J alleles indicated that normal alleles occur in four major haplotypes, whereas all APRT*J alleles occur in only two. These results suggest that all APRT*J alleles have a single origin and that this mutant sequence has been maintained for a long period, as calculated from the frequency of the recombinant alleles.  相似文献   

14.
The albino deletion complex in the mouse represents 37 overlapping chromosomal deficiencies that have been arranged into at least twelve complementation groups. Many of the deletions cover regions of chromosome 7 that contain genes necessary for early embryonic development. The work reported here concentrates on two of these deletions (c6H, c11DSD), both of which were known to be lethal around the time of gastrulation when homozygous. A detailed embryological analysis has revealed distinct differences in the lethal phenotype associated with the c6H and c11DSD deletions. c6H homozygous embryos are grossly abnormal at day 7.5 of gestation, whereas c11DSD homozygous embryos appear abnormal at day 8.5 of gestation. There is no development of the extraembryonic ectoderm in c6H homozygotes, whereas extensive development of this tissue type occurs in c11DSD homozygotes. The visceral endoderm is abnormally shaped and the parietal endoderm appears to be overproduced in c6H homozygotes; these structures are not affected in c11DSD homozygotes. The embryonic ectoderm is runted in both types of embryo and it is not possible to obtain homozygous embryo-derived stem-cell lines for either deletion. Mesoderm formation occurs in the c11DSD but not in the c6H homozygotes. The c11DSD deletion chromosome complements the c6H chromosome in that the lethal phenotype of the compound heterozygote is similar to that of the c11DSD homozygote. These results suggest that a gene(s) necessary for normal development of the extraembryonic ectoderm is present in the c11DSD but deficient in the c6H deletion chromosome.  相似文献   

15.
Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases.  相似文献   

16.
To determine the types of alterations in gene structure induced by DNA-alkylating agents, we analyzed the restriction enzyme cleavage patterns of adenine phosphoribosyltransferase gene sequences in mutant strains of Chinese hamster ovary cells deficient in this enzyme. Base pair changes as detected by loss of restriction enzyme sites were found, but no major internal gene rearrangements could be detected.  相似文献   

17.
Clones of cells resistant to 2,6-diaminopurine were detected in skin fibroblast cultures derived from 13 of 21 normal humans of both sexes from 17 unrelated families. Almost all of the cultures that yielded mutants were chosen for further study from among a total of 83 surveyed because they displayed a slight resistance to low concentrations of diaminopurine. The incidences of mutant colonies ranged between about 10(-5) and 10(-4) per cell surviving prior mutagenic treatment with MNNG. The incidences of spontaneous mutants were about 10(-7) to 10(-5) in three unrelated cultures. Most independent mutants had distinctly reduced activity of adenine phosphoribosyltransferase but some had apparently normal amounts of activity. Two mutants from unrelated boys had little or no detectable enzyme activity and were unable to effectively use exogenous adenine for growth when purine biosynthesis was blocked with azaserine. Most mutants could utilize exogenous adenine, just as most azaguanine-resistant fibroblast mutants can utilize exogenous hypoxanthine, even when their hypoxanthine-guanine phosphoribosyltransferase activity is reduced. Diverse genetic changes conferred diaminopurine resistance but their specific natures are still undefined. Gross numerical or structural chromosome abnormalities were not observed in the mutants examined so far. Since at least one gene responsible for adenine phosphoribosyltransferase activity is on autosome No. 16 our results suggest that at least some of the cultures yielding mutants were heterozygous and that alleles conferring diaminopurine resistance may be frequent enough to comprise a polymorphism.  相似文献   

18.
Generally, if mutant and normal proteins have similar molecular weights and electric charges, they cannot easily be distinguished from one another. We have developed a unique method by which a mutant enzyme of adenine phosphoribosyltransferase (APRT) can easily be distinguished from normal enzyme with nearly identical molecular weight and electric charge. DNA sequencing data have suggested that in this special type of disease (Japanese-type APRT deficiency) there is an amino acid substitution from Met to Thr at position 136 of APRT. Since normal APRT has only one Met residue, the Japanese-type mutant APRT should be a methionine-free protein. Using both an amino acid sequence-specific antiserum against APRT, and specific cleavage of peptide at the methionine residue with BrCN, we could distinguish between normal and mutant proteins. Thus, normal but not mutant APRT was cleaved with BrCN, indicating that the mutant APRT is a methionine-free protein. All tested patients with the Japanese-type APRT deficiency were found to synthesize exclusively methionine-free APRT. Usefulness of this method is not restricted to a single family, as 79% of all the patients with this disease among Japanese, and more than half of all the patients with this disease reported in the world, are likely to have this unique mutation. Thus, not only sequence-specific cleavage of DNA with restriction endonucleases but also that of protein with a chemical agent has been shown to be sometimes useful for the diagnosis and analysis of a genetic disease by careful examination of normal and mutant amino acid sequences.  相似文献   

19.
Five mutations in the adenine phosphoribosyltransferase (APRT) gene have been described in Japanese patients with APRT deficiency. We investigated the APRT gene from three patients with APRT deficiency and two novel mutations, G133D and V84M, were determined.  相似文献   

20.
A micromodification of the method of HGPRT and APRT assay is described, which measures the incorporation of 14C hypoxanthine and 14C adenine into cultured skin fibroblasts and amniotic cells grown on microtiter plates. Only about 10000 cells are needed per assay. By this method HGPRT deficient cells can be easily distinguished from normal cells. Investigations with respect to the effect of substrate concentrations and time of incubation have been carried out on some normal fibroblast cell lines, amniotic cell lines and 3 Lesch-Nyhan cell lines. Another modified method is described for quantitative determination of HGPRT activity by means of radio thin-layer chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号