首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract— White matter and purified myelin from cerebral tissue obtained at autopsy from four phenylketonuric and five non-phenylketonuric mentally-retarded patients were analysed for lipids, DNA and protein. The lipid composition of the white matter and myelin was compared with that of a representative non-myelin component of white matter, the crude mitochondrial fraction. The total lipid content was significantly lower and the ratio of cholesterol to galactolipid was significantly higher in the white matter from the PKU patients than in that from the non-PKU patients. The lipid compositions of the myelin and ‘mitochondrial’ fraction, although differing from each other, did not exhibit appreciable differences between the PKU and non-PKU brain samples. However, the amount of myelin recovered from the brains of the PKU patients was, on the average, 40 percent lower than that recovered from non-PKU brains. The abnormal cholesterol: galactolipid ratio of PKU white matter could be accounted for by the altered proportion of myelin to non-myelin lipid components. The finding in PKU brains of a normal composition of lipids in the purified myelin and the absence of cholesterol esters in the white matter suggest that the deficiency in myelin may reflect an early arrest of myelination.  相似文献   

2.
Perinatal asphyxia remains a major cause of acute mortality and of permanent neurodevelopmental disability in infants and children. However, the pathophysiologic features of hypoxic-ischemic encephalopathy are still incompletely understood. Animal studies have been focussing on grey matter pathology but information on white matter lesions is limited. The aim of the study was to investigate white matter lesions after three months following graded perinatal asphyxia in the rat using a well-documented, reproducible, clinically relevant and simple animal model of perinatal asphyxia. Brains of rat pups (n=10 per group) exposed to asphyctic periods of 10 and 20 minutes were examined histologically and compared to normoxic brain using Kluever-Barrera myelin staining, immunohistochemically with antibodies against myelin basic protein, 2',3'-cyclic-nucleotide'-phosphodiesterase as markers for myelination, antibodies against neurofilaments for the evaluation of axonal density and antibodies against glial fibrillary acidic protein as a marker for astrocytic gliosis. Morphometry three months after perinatal asphyxia showed significant reduction of corpus callosum in asphyctic brains. Patchy myelination deficits were found in hippocampal fimbriae and cerebellum, lobulus L 8, accompanied by reduced axonal density. Hypothalamus and striatum did not show any myelination deficit. Up to now only short term effects of perinatal asphyxia on myelination have been reported and this communication reveals long-term myelination deficit in three brain regions after three months following perinatal asphyxia. As myelination deficit was regularly accompanied by reduction of neurofilament immunoreactivity, we suggest that white matter lesions are paralleling grey matter damage, a subject still controversial in pathophysiology of brain damage in perinatal asphyxia.  相似文献   

3.
COMPOSITION OF CEREBRAL LIPIDS IN MURINE LEUCODYSTROPHY: THE QUAKING MUTANT   总被引:3,自引:3,他引:0  
The composition of sphingolipids and phospholipids of mouse brain during myelination was determined in the Quaking mutant, which manifests a genetic disorder of myelin formation, and in littermate controls. The biochemical changes during myelination in the brains of the controls corresponded quantitatively with previous findings in a different strain of mice. The Quaking mutant exhibited concentrations of sphingolipids and phospholipids in brain which were comparable to those of controls in the early stage of myelination but the tissue content failed to increase with maturation. The greatest differences occurred in the cerebrosides which at 65 days of postnatal age were only 10 per cent of control levels. During development the pattern of cerebral levels of sphingomyelin, plasmalogen and total phospholipid in the mutants tended to resemble that of the cerebrosides. The defect in the Quaking mutant is compatible with a failure in maturation of myelin. These findings have been compared with those in the Jimpy mutant, a different genetic disorder of myelin in the mouse previously studied in a similar fashion. The Jimpy mutant is characterized by a quantitatively more pronounced deficiency of myelin lipids and a decline in cerebrosides during brain development.  相似文献   

4.
—Fatty acids typical of grey matter lipids (C20:4 and C22:6) and of myelin lipids (C20:1 and C24:1) were estimated in developing rat brains. The polyenoic fatty acids (C20:4 and C22:6) are synthesized from the essential fatty acids (C18:2 and C18:3). The results showed that more than 50 per cent of the adult content of the brain polyenoic acids were laid down by day 15. In contrast, the fatty acids characteristic of myelin lipids did not appear in significant quantities until after this time. These findings distinguish biochemically the different periods of brain development associated firstly with cell division (formation of neurons and glial cells) and secondly with myelination. It is of special interest that the period of cell proliferation is accompanied by the appearance in brain lipids of long-chain polyenoic acids derived from the essential fatty acids.  相似文献   

5.
Myelin from subcortical normal-appearing white matter of control and multiple sclerosis (MS) brains was isolated and subsequently subfractionated on discontinuous sucrose gradients. Three following myelin subfractions were obtained: light myelin (buoyant density ? 0.625 M), medium myelin (0.625 M > buoyant density ? 0.7 M), and heavy myelin (buoyant density > 0.7 M). The yield of total myelin (the sum of all three subfractions) recovered from MS specimens was about 30% lower than that from the white matter of the control brains. Furthermore, MS myelin was deficient in the light subfraction and was enriched in the heavy subfraction. No abnormality in lipid composition of MS subfractions was observed. On the other hand, myelin particles isolated from the MS tissue were depleted in basic protein. The results are interpreted as an evidence for a rather diffused pathological process in MS white matter.  相似文献   

6.
(1) Brain composition and developmental changes were investigated in a mutant (‘Jimpy’) mouse characterized by a severe myelin deficiency. (2) Significantly lower cholesterol, phospholipid and galactolipid values were observed, and the accumulation of these lipids during the myelination period was markedly reduced or absent. (3) The most remarkable feature of ‘Jimpy’ brain was a very small galactolipid content. In 29-day-old mutants the concentration of galactolipids was 0-18 μ moles/g wet wt., representing a 46-fold decrease when compared to values determined in normal mice. (4) There was no such striking change in the distribution of different phospholipids. However, lowered relative amounts of some phospholipids, e.g. ethanolamine plasmalogen, sphingomyelin and phosphatidylserine, were observed in ‘Jimpy’ brain. (5) Protein content was also lower in mutant brains and showed an absolute decrease after 23 days of life. (6) These data support the statement that the process of myelination is disturbed at an early stage, resulting in a deficiency of mature myelin sheaths and leading probably to the breakdown of primitive myelin structures.  相似文献   

7.
Brains and spinal cords of myelin-deficient (md) and littermate control rats were analyzed serially for myelin lipids during the period from 13 to 32 days of age. The glycolipids of md rat brains were severely reduced and remained so during the period of study; brain cholesterol and phospholipids increased moderately but never reached the values for control brains. Deficiency of all three lipid classes was marked in the spinal cord and did not change with age. Among the glycolipids of md rats, deficiency was more severe in cerebrosides than sulfatides. The pronounced reduction of cerebrosides in the early stages of myelination suggests that abnormal synthesis of these glycolipids may be the most important biochemical anomaly responsible for myelin deficiency.--Csiza, C.K. Lipid class analysis of the central nervous system of myelin-deficient Wistar rats.  相似文献   

8.
COMPARISON OF THE FATTY ACIDS OF LIPIDS OF SUBCELLULAR BRAIN FRACTIONS   总被引:6,自引:3,他引:3  
Abstract— Rat brain grey and white matter were fractionated to yield myelin, nerve terminal, synaptic vesicle, nerve terminal 'ghost', and microsomal fractions of white and grey matter. Ester-type glycolipids were found in all fractions except myelin, while cerebrosides occurred in significant concentrations only in myelin and white microsomes. Comparison of the fatty acid profile of the ethanolamine- and serine-containing phospholipids showed marked differences between myelin and the particles from grey matter, while the microsomes of white matter were of intermediate composition. Docosahexaenoic acid, a minor acid in myelin, was a major fatty acid in microsomes of grey and white matter. The fatty acid composition of sphingomyelin was distinctly different in the fractions derived from grey and white matter, clustering about stearate and nervonate in the latter, but only about stearate in the grey. Marked differences in the positional distribution of fatty acids were seen within phosphatidyl choline from myelin and nerve terminals. Ribonucleic acid was found in nerve terminal and synaptic vesicle fractions. The sphingosine found in the ganglioside from microsomes of both grey and white matter was similar with respect to distribution of the C18 and C20 homologues.
The possibility is discussed that microsomes furnish characteristic lipids for the synthesis or renewal of specific membranes, and that these lipids are accumulated somewhat before being released.  相似文献   

9.
Lipids and proteins in multiple sclerosis white matter   总被引:2,自引:1,他引:1  
Abstract— Quantitative analyses of white matter from four brains of patients with multiple sclerosis (MS) and four control brains were carried out for total and soluble proteins, individual lipid fractions, and their corresponding fatty acids. In three specimens from two of the MS brains there were reductions of cerebrosides and of the C20:1 acid in the ethanolamine glycerophosphatide (EGP) fraction and a slight increase of tetraenes and trienes, while all other components were present in concentrations similar to those in the controls. In three other samples from two of the MS brains, galactolipids were deficient to a greater extent than cholesterol, EGP or CGP (choline glycerophosphatide), while proteins were within the control range. In samples where thinning of myelin was observed in Luxol-blue stained sections, there were proportional decreases of all components. The percentage of C20:1 acid in the EGP fraction was reduced in two of three myelin preparations from corresponding samples of MS white matter, and that of C24:1 acid in the cerebroside fraction was reduced in all three MS myelin preparations when compared with the two controls. The data suggest that inadequacy of the fatty acid elongation process together with deficits of cerebrosides represent one of the early biochemical lesions in the white matter of the MS brain.  相似文献   

10.
The lipid compositions of 10 different brain regions from patients affected by Alzheimer's disease/senile dementia of Alzheimer's type were analyzed. The total phospholipid amount decreased somewhat in nucleus caudatus and in white matter. The cortical areas that are morphologically affected by Alzheimer's disease, i.e., frontal and temporal cortex and the hippocampus, showed elevated contents of lipid solvent-extractable phosphatidylinositol. Sphingomyelin content was decreased in regions rich in myelin. There was a 20-50% decrease in dolichol amount in all investigated parts of the brain, but no change was seen in the polyisoprenoid pattern. Levels of alpha-unsaturated polyprenes were decreased in Alzheimer brains. Dolichyl-phosphate content increased in most regions, up to 100%. In both control and Alzheimer tissue almost all of the dolichyl-phosphate was covalently bound, apparently through glycosylation. Cholesterol amounts were highly variable but mostly unchanged, whereas ubiquinone concentrations increased by 30-100% in most regions in brains affected by Alzheimer's disease. These results demonstrate that both phospholipids and neutral lipids are modified in brains affected by Alzheimer's disease/senile dementia of Alzheimer's type.  相似文献   

11.
—The regional distributions of cystathionine synthase, cystathionine and taurine in the brain of the Rhesus monkey were determined at various stages of foetal and postnatal development. Activity of cystathionine synthase was highest in cerebellum, cortical grey areas and globus pallidus, and lowest in subcortical white matter and corpus callosum. There was no marked change in activity in any area during development from the first-trimester foetus to the juvenile animal. In the brain of the juvenile monkey concentrations of cystathionine were highest in subcortical white matter, corpus callosum, and globus pallidus, and lowest in cortical grey matter. There was a sharp increase in concentration between late foetal life and the first 2 weeks of postnatal life and a subsequent more gradual increase during the next 2 years. Concentrations of taurine were highest in lateral cerebellum and neostriatum and lowest in brain stem areas and spinal cord. During the first 6 months of postnatal life, there was a marked decrease in concentration as the brain matured. The regional distribution of cystathionine in brain suggests that this compound may be synthesized in the perikaryon of the nerve cell and transported down axons into white matter. The changes during development suggest the further possibility that cystathionine may have some relationship to myelin and/or myelination.  相似文献   

12.
Abstract— The composition of sphingolipids and phospholipids of mouse brain during myelination was determined in normal animals and in mice with a genetically-determined disorder of myelin formation. Myelination was normally characterized by a two-fold increase in total phospholipids of brain, a four-fold increase in total sphingolipids, and a six-fold increase in cerebrosides. The Jimpy mutant, with defective formation of myelin in the central nervous system, demonstrated a marked deficiency of cerebrosides and a significantly lower content of total sphingolipids, without alteration of the composition of phospholipids. The increasing content of cerebrosides in the brains of the leucodystrophic mutant at the time in development when myelination is most active and the subsequent relative deficit suggest that the failure of myelin formation is not the result of a defect in biosynthesis of cerebrosides.  相似文献   

13.
Abstract— —Cholesteryl esters were isolated from the cerebral cortex and white matter of human brains at different ages, and their concentration and composition determined. The esters were separated from other lipids by chromatography on silicic acid and finally purified by TLC. The fatty acids were converted to the methyl esters by alkaline trans-methylation and analysed by GLC. A TLC method was elaborated for quantitative determination of small amounts of cholesteryl esters in the presence of free cholesterol. The concentration of cholesteryl esters was only 0·1–0·2 per cent of the total cholesterol content of cerebral tissue in older children and adults. During early myelination the concentration was many times greater, especially in the white matter but it never exceeded 2 per cent of the total cholesterol in any subject. The major fatty acids of human brain cholesteryl esters were oleic, palmitic, palmitoleic and arachidonic acid. After completion of myelination, arachidonic acid constituted the major fatty acid. There were fairly small differences in the fatty acid pattern of the cholesteryl esters between grey and white matter, but the concentration of polyunsaturated fatty acids was larger in the grey matter. Cholesteryl esters appear to play an important role in the metabolism of the phosphoglyceride fatty acids in cerebral tissue.  相似文献   

14.
Using in situ hybridization for the mouse brain, we analyzed developmental changes in gene expression for the ATP-binding cassette (ABC) transporter subfamilies ABCA1-4 and 7, and ABCG1, 2, 4, 5 and 8. In the embryonic brains, ABCA1 and A7 were highly expressed in the ventricular (or germinal) zone, whereas ABCA2, A3 and G4 were enriched in the mantle (or differentiating) zone. At the postnatal stages, ABCA1 was detected in both the gray and white matter and in the choroid plexus. On the other hand, ABCA2, A3 and A7 were distributed in the gray matter. In addition, marked up-regulation of ABCA2 occurred in the white matter at 14 days-of-age when various myelin protein genes are known to be up-regulated. In marked contrast, ABCA4 was selective to the choroid plexus throughout development. ABCG1 was expressed in both the gray and white matters, whereas ABCG4 was confined to the gray matter. ABCG2 was diffusely and weakly detected throughout the brain at all stages examined. Immunohistochemistry of ABCG2 showed its preferential expression on the luminal membrane of brain capillaries. Expression signals for ABCG5 and G8 were barely detected at any stages. The distinct spatio-temporal expressions of individual ABCA and G transporters may reflect their distinct cellular expressions in the developing and adult brains, presumably, to regulate and maintain lipid homeostasis in the brain.  相似文献   

15.
Myelinated axons were isolated by flotation from bovine pons, middle cerebellar peduncle, cervical spinal cord and three regions of the subcortical white matter. The myelinated axons were osmotically and mechanically shocked, followed by fractionation on a linear 15% sucrose to 45% sucrose density gradient. Axolemma-enriched fractions (AEF) found in the 28% to 32% sucrose region of the gradient from brainstem and cord white matter had high acetylcholinesterase (AChE) while little or nil AChE activity was found in corresponding AEF derived from the subcortical white matter. Morphologically, the subcortical white matter from all regions contained a heterogeneous population of well-myelinated to thinly myelinated axons, while brainstem and cord regions contained a more homogeneous population of well-myelinated axons. Histochemical analysis of AChE localized this enzyme to axonal elements. The AEF derived from any white matter source had similar polypeptide compositions. AEF derived from subcortical white matter contained two-fold more myelin basic protein and a three-fold greater content of 2 3 cyclic nucleotide 3 phosphodiesterase (CNP) compared with AEF derived from well myelinated white matter. We conclude that the purity of the AEF is related to the degree of myelination of the white matter from which the AEF is derived. Homogeneously well myelinated white matter (pons, cerebellar peduncle, cervical spinal cord) yields the highest purity AEF, as judged by the low CNP and myelin basic protein content and highest enrichment in AChE specific activity.  相似文献   

16.
The fatty acid composition of cerebrosides and sulfatides from frontal lobe gray and white matter was determined for five fresh and four formalinized adult brains and for eight infants. Fatty acid patterns were unaffected by formalinization, but varied considerably from one another in the proportion of saturated to unsaturated fatty acids. The percentages of 24:0 and 24:1 increased with age. Cerebrosides obtained from areas such as the brainstem and cerebellum, where myelination was more advanced, tended to have a larger proportion of long-chain fatty acids than samples extracted from frontal or parietal lobe white matter. Hydroxy fatty acids showed an adult pattern in all instances in which amounts sufficient for accurate quantification could be isolated. Lipid hexose, cerebroside + sulfatide hexose, and methanoleluted hexose were measured in the brains of 12 infants ranging in age from a 4 month fetus to 2 yr. In the most immature, the majority of lipid hexose was in the form of glycolipids more polar than cerebrosides and sulfatides. These have tentatively been identified as hematosides and globosides. With maturation, cerebrosides and sulfatides increased progressively, but the amounts of the more polar glycolipids remained constant in relation to the total lipid content of tissue.  相似文献   

17.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

18.
Both late-gestation and adult human forebrain contain large numbers of oligodendrocyte progenitor cells (OPCs). These cells may be identified by their A2B5(+)PSA-NCAM(-) phenotype (positive for the early oligodendrocyte marker A2B5 and negative for the polysialylated neural cell adhesion molecule). We used dual-color fluorescence-activated cell sorting (FACS) to extract OPCs from 21- to 23-week-old fetal human forebrain, and A2B5 selection to extract these cells from adult white matter. When xenografted to the forebrains of newborn shiverer mice, fetal OPCs dispersed throughout the white matter and developed into oligodendrocytes and astrocytes. By 12 weeks, the host brains showed extensive myelin production, compaction and axonal myelination. Isolates of OPCs derived from adult human white matter also myelinated shiverer mouse brain, but much more rapidly than their fetal counterparts, achieving widespread and dense myelin basic protein (MBP) expression by 4 weeks after grafting. Adult OPCs generated oligodendrocytes more efficiently than fetal OPCs, and ensheathed more host axons per donor cell than fetal cells. Both fetal and adult OPC phenotypes mediated the extensive and robust myelination of congenitally dysmyelinated host brain, although their differences suggested their use for different disease targets.  相似文献   

19.
Abstract: A study of purified myelin samples from normal-appearing white matter of 10 multiple sclerosis (MS) brains was undertaken and the results were compared with 10 age-matched control brains. Statistical evaluations were carried out with Student's r-test for differences. In pathological samples the yield of myelin came to only two-thirds of the corresponding controls. Enzyme assays of the 2', 3'-cyclic 3'-phosphohydrolase revealed an obviously significant reduction of specific activity to one-half in MS myelins. In myelin the contents of protein, lipid classes as cholesterol, glycolipids and phospholipids did not differ significantly. No cholesterol esters or any lysophospholipid were detectable either in MS or in controls. Within the individual phospholipids the main components were in the same order, while a significant decrease of the acidic representatives and of sphingomyelin occurred. Analysis of the fatty acid pattern of phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the aldehydes from the last, revealed quite similar values with no significant differences, except C22: 4 fatty acid in the PE fraction and C20: 1 fatty acid in PS, which were reduced in MS myelin samples.  相似文献   

20.
Abstract— Brain, spinal cord and sciatic nerve from rats at different ages were incubated for 2 h in a medium containing [14C]acetate and [14C]leucine as the precursors for synthesis of lipids and proteins. Myelin was purified from the incubated tissues and the specific and total radioactivites of myelin lipids and protein were determined. The uptake of radioactive precursors decreased with increasing age up to 6 months of postnatal age, the decrease following the same pattern for the three types of myelin. After age 6 months the uptake of the protein and lipid precursors reached a plateau that persisted up to 18 months, the oldest postnatal age studied. The amount of myelin isolated and the total myelin lipids extracted from both the central and peripheral nervous systems increased continuously from age 25 days to 18 months after birth. Consequently we suggest that myelination is a process that continues during the whole life of the rat.
The metabolic activity of peripheral nerve myelin was higher than myelin from the CNS at all ages studied. Although myelination in the sciatic nerve begins before that in brain and spinal cord, the three types of myelin apparently reach maturity at the same age. Lecithin exhibited the highest metabolic activity of the individual myelin lipids at all ages in both the central and peripheral nervous system. The metabolic activity of cholesterol in myelin from the 25-day-old rats was similar to that of lecithin but decreased to very low levels in myelin from the 18-month-old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号