首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
火炬松(PinustaedL)界南方松中最重要的针叶树种之一,在环境保护,园林绿化和林业生产中有重要应用价值。有关火炬松未成熟胚的体细胞胚胎发生和器官发生的研究报道不多,其成熟合子胚的愈伤组织器官发生则未见报道。本文以取自湖南省邵阳市林场的火炬松成熟种胚为外植体,在诱导其愈伤组织器官发生的基础上,系统地研究了BA浓度,基本培养基(TE)浓度和不同碳源等对愈伤组织上不定芽的发生和发育的影响,优化了火炬松离体再生的培养条件,为火炬松的无性繁殖技术应用于实际生产奠定了基础。研究结果表明:不同的浓度条件下,4mg/LBA培养基上的不定芽诱导频率和每个胚上的芽平均数最高,分别是76.3%和3.4。火炬松器官发生愈伤组织(Fig.1)上的不定芽形成于愈伤组织表面(Fig.2)。不定芽的发生常不同步(Fig.3)。不定芽在低浓度BA(1~2mg/L)条件下发育较好(Fig.4),在高浓度BA(8~16mg/L)条件下发育减慢(Fig.5),在1mg/LBA条件下伸长生长较快(Fig.6);不同浓度基本培养基的实验结果表明,当基本培养基浓度为1.25TE时,不定芽诱导频率(73.5%)和每个胚上的芽平均数(3.9)最高。当  相似文献   

2.
体外培养对于植物的快速繁殖是非常有效的。和其它一些松果类硬木植物一样,火炬松的体外培养成功率却一直很低。本工作研究了不同的基本培养基和低温条件对于火炬松J-56, S-1003, and E-440等三个品系的成熟合子胚形成愈伤组织、分化出芽、成苗的影响。在不同的基本培养基条件下芽分化的程度差异很大。合子胚经过9-12周培养,开始分化,形成具有器官发生的愈伤组织(Fig.2a)。分化后3周,开始诱导出芽(Fig.2b),芽的生长快慢不同(Fig.2c,d)。同一个愈伤组织上会生出几个芽来(Fig.2e)。在添加有IBA和BA的TE培养基上芽生长最快(Fig.1)。低温条件持续 15天,能增加芽的数量和分化的程度(Table1)。上述培养基中增加GA3时表明,GA3对于根的诱导有决定性的作用。将98株再生苗转移到特殊的混合土壤上;成活了75株苗(Fig.2f)。以这三种火炬松的再生苗尖为材料制备DNA。用20个引物进行RAPD分析,结果表明:这三种火炬松苗的扩增产物是相同的(Fig.2g,h&i)。这说明:用愈伤组织克隆植株的过程中没有引起植物遗传变异。  相似文献   

3.
大叶紫花苜蓿愈伤组织原生质体再生植株   总被引:15,自引:0,他引:15  
大叶紫花苜蓿下胚轴诱导的愈伤组织在继代培养基上生长快速,易于分散。继代第12d的愈伤组织原生质体的得率为6.5×107/g鲜重。原生质体培养基为SH基本培养基,含有1.0mg/L2,4-0、0.5mg/LBA、2.0g/LCH、2%蔗糖、6%葡萄糖、5mmol/LMES,培养密度为1.0×105/mL。培养至第12d时的原生质体再生细胞植板率为3.7%。由原生质体形成的小愈伤组织在含2.0mg/L2,4-D的MS固体培养基上大量增殖。增殖的愈伤组织转移至2.0mg/L2-ip+0.1mg/LNAA的B5培养基上,形成体细胞胚并发育成完整植株。  相似文献   

4.
百脉根愈伤组织原生质体再生植株   总被引:1,自引:0,他引:1  
百脉根无菌苗幼茎在含2.0mg/L-,2,4-D,0.1mg/L2-ip的MS培养基上诱导和继代培养愈伤组织。选取绿色松散颗粒愈伤组织分离原生质体。原生质体培养在调整珠KM8P,V-KM,MS和SH培养基上「含300mg/L,CH,2%CW,2%蔗糖,6%葡萄糖,2.0mg/L,2,4-D,0.5mgg/L,BA,5mmol/L MES」,原生质体再生细胞均能分裂,并形成小愈伤组织,但以KM80为  相似文献   

5.
火炬松(Pinus taeda L.)是我国亚热带和部分地区最重要的绿化和造林树种。它的生长周期长,杂合程度高,难以用常规的杂文进行品种改良。建立火世松的原生质抗体胚胎发生体系,有可能、进而以遗传转化为基础进行火炬松等针叶树的品种改良。本研究以湖南省绍阳市的火炬松成熟种子为材料,建立胚性细胞悬浮系。将其培养至对数生长期,用1%RS、2.5%和0.2%Y-23的酶混各液分离原生质体,活力达90%以上(Fig.1)。纯化原生质体,在再生培养基上培养2天后,细胞壁再生(Fig.2);6天后,(65%的原生质体第1次分裂(Fig.3);培养3周后,形成小细胞团(Fig.4);6周后,形成大细胞团(Fig.5);8周后,形成胚性胚柄细胞团(ESM)(Fig.6);10周后,形成早期体细胞胚(ESE)(Fig.7);12周后,形成后期体细胞胚(LSE)(Fig.8)。火炬松原生质体胚形成过程中的关键结构是ESM,ESE和LSE。它们形成的最佳基本培养基是1.25LP培养基。再生培养基中高浓度的BA和低浓度的肌醇有利于ESM的形成,但不利于ESE和LSE厮。再生培养基中高浓度的BA和低浓度的肌醇有利于ESM的形成。但不利于ESF和LSE的形成;反之,低的BA和高的浓度的肌醇不利于ESM的形成,但有利于ESE和LSE的形成。因此,用不同的再生培养基对火炬松原生质体培养物所形成的ESM,ESE和LSE进行分步培养可能更有利于火炬松原生质体胚胎发生效率的提高。  相似文献   

6.
杨树新品种叶肉原生质体培养和植株再生   总被引:4,自引:1,他引:3  
从1 个月龄的NL-80106 杨(Populusdeltoides×P. sim onii)无菌苗叶片分离得到大量原生质体,纯化后其原生质体产量为4×107/g fr.w t. 纯化的原生质体在含2,4-D 2 m g/L、NAA 0.5 m g/L和KT 0.5 m g/L的KM8p 和MS培养基中进行高密度液体浅层培养,渗透势为0.40 m ol/L的KM8p 培养基中原生质体分裂频率最高. 培养第5 天观察到第一次细胞分裂,培养10 d 的分裂频率为4.5% ,12 周内可形成大量的细胞团和小愈伤组织. NL-80106杨叶肉原生质体在富含有机氮并以葡萄糖为碳源的培养基中具有较高的分裂频率和植板率.小愈伤组织在gelrite 固化的NLZ1 培养基上增殖生长,3 周后形成4—6 m m 结构紧密的鲜红色愈伤组织,转至NLF分化培养基,分化成苗率为100% . 待芽伸长到3 cm 时,从基部切下转至1/2 MS培养基上诱导生根,形成完整植株  相似文献   

7.
从甘蔗(Saccharum officinarum L.)嫩叶外植体诱导愈伤组织,经继代培养后,挑选胚性愈伤组织,转入MS3 液体培养基,进行悬浮培养。当培养物分离出小粒状的细胞团,细胞变得小而圆时,用于分离原生质体。原生质体以琼脂糖固化的培养方式培养于MRP1 培养基中。由原生质体再生的愈伤组织有两种类型。挑选粒状、坚实的再生愈伤组织转移到N6 分化培养基上,“新台糖1 号”再生的愈伤组织,在含有KT 0.5 m g/L的培养基中,分化出绿芽并长成完整的植株。而“粤糖57-423”和“US66-56-9”再生的愈伤组织,在加有0.1% 的活性炭的培养基中,前者分化出白化苗,后者分化出根  相似文献   

8.
菜心下胚轴原生质体培养和植株再生   总被引:6,自引:0,他引:6  
以萌发3—4 天(长约4 cm )的菜心(Brassica campestris var.parachinesis)无菌苗苍白下胚轴为材料,酶解分离原生质体。经纯化的原生质体,在含0.5 m g/LZT、0.5 m g/L2,4-D、1.0 m g/LNAA 和0.4 m ol/L葡萄糖的K8p 培养基中,进行微滴培养。在起始培养14—18小时,原生质体再生新的细胞壁。36 小时再生细胞开始第一次分裂。第三天分裂细胞频率可达35% 。培养第8—9 天,可见含8—16个细胞的小细胞团,植板率为15% —18% 。3 周后将发育成直径为2 m m 的白色小愈伤组织,转到含0.3 m g/L 2,4-D并用gelrite半固化的培养基上,增殖成4—5 m m 直径的愈伤组织。在MS+ 3.2(或1.6) m g/L BA+ 1.6(或0.8) m g/LZT+ 0.01 m g/L NAA+ 0.1 m g/LGA3 和0.2% 蔗糖的分化培养基上,获得芽的分化。切下约2 cm 长的芽苗,转移到含0.2 m g/LIAA 和2% 蔗糖的培养基上,生根形成完整植株  相似文献   

9.
火炬松原生质体的体细胞胚胎发生   总被引:4,自引:0,他引:4  
研究了基本培养基、原生质体密度和ABA浓度对火炬松(PinustaedaL.)悬浮细胞原生质体体细胞胚胎发生的影响。结果表明,DCR基本培养基最有利于原生质体的体细胞胚胎发生。体细胞胚胎发生所需的最适原生质体密度和ABA浓度分别是7×104个/mL和4mg/L。显微观察表明,来自原生质体的胚性胚柄细胞团(ESM:embryogenicsusPensormass),经早期原胚(ESP:earlystageProembryos)阶段形成了后期原胚(LSP:latestageProembryos)。这一结果为火炬松的原生质体培养再生植株奠定了基础。  相似文献   

10.
埃斯基红豆草下胚轴愈伤组织原生质体的培养与植株再生   总被引:4,自引:0,他引:4  
埃斯基红豆幼苗的下胚轴切段在附加2,4-D0.5mg/L,KT1mg/L的MS中形成胚性愈伤组织。来自11-13个月龄、继代6-15天的愈伤组织的原生质体,在改良的V-KM液体培养基中可持续分裂形成细胞团,培养10天时的分裂率和克隆率分别为65.88%和53.38%周后就可将将原生质体形成的小愈伤组织转于培养基上。原生质体在改良的B5液体培养基也可以分裂形成小愈伤组织,但分裂率低于V-KM。来自原  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号