首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Two experiments were carried out on ewes with ovarian autotransplants to estimate the ovarian uptake of glucose and production of lactate. The first was carried out in the luteal phase of the oestrous cycle. Samples of carotid arterial, ovarian venous and jugular venous blood were collected simultaneously for glucose analysis. The arterial concentration of glucose (58.0 ± 5.0 mg/dL; Mean ± SEM) was significantly higher than the ovarian venous concentration (42.3 ± 2.4 mg/dL; P < 0.001). Next, a second more complete experiment was carried out in the luteal and follicular phases of the oestrous cycle. The oestrous cycle was synchronised and samples of carotid arterial, ovarian venous and jugular venous blood were collected simultaneously for glucose and lactate analysis. There were significant positive arterio-venous differences in the concentration of glucose in the luteal (5.6 ± 1.2 mg/dL, mean ± SEM; P = 0.001), early (3.1 ± 0.82 mg/d; P = 0.003) and late follicular (6.4 ± 1.3 mg/dL; P = 0.001) phases of the oestrous cycle. There was a significant negative arterio-ovarian venous difference in the concentration of lactate in only the luteal phase (-2.2 ± 0.96 mg/dL; P = 0.043).The results show significant removal of glucose from the arterial circulation during its passage through the ovary in the luteal, early follicular and late follicular phases of the oestrous cycle. Furthermore, there was lactate production in the luteal phase but not in the follicular phase suggesting that in the luteal phase of the oestrous cycle, ovarian metabolism can be anaerobic.  相似文献   

2.
The local destination transfer of prostaglandin E2 (PGE2) from the uterine lymph to arterial blood supplying the ovary and its retrograde transfer to arterial blood supplying the uterine horn and the effect of additional delivery of PGE2 into the ovary on the secretion of steroid hormones was studied in early pregnant gilts. The injection of PGE2 under the perimetrium caused an increase (P<0.001) in PGE2 concentration in both uterine venous effluent and ovarian and uterine arterial blood. The infusion of PGE2 into the ovarian artery increased the concentration of progesterone in ovarian venous blood on day 13 of pregnancy during (P<0.05) and after (P<0.001) infusion, and on day 14 of pregnancy after infusion (P<0.01). In conclusion, local destination transfer of PGE2 from uterine lymph and venous blood to the ovary may affect luteal function, and retrograde transfer of PGE2 to the arterial blood supplying the uterus may contribute to the prevention of regressive changes of the endometrium in early pregnant gilts.  相似文献   

3.
Arteries, veins, capillaries and lymphatic vessels situated in the mesovarium and mesosalpinx of domestic animal species (pig, cow, sheep) form the periovarian vascular complex. Particular components of the periovarian vascular complex interact functionally and morphologically creating a specific environment for numerous physiological processes. The complex plays an essential role in the system of the retrograde transfer of the ovarian hormones. This phenomenon is especially well documented in pigs. The efficiency of the retrograde transfer of estradiol and progesterone from blood and lymph leaving the gonad to blood of the ovarian artery (expressed as percentage of their concentration in the ovarian venous blood) as well as the rate of the retrograde transfer of these hormones to the ovary (measured in nanograms or picograms per minute) is presented and discussed in this paper. No simple relationship was found between hormone concentration in ovarian venous effluent and the efficiency or the rate of their retrograde transfer during the estrous cycle. It appears that two processes contribute to the highly efficient retrograde transfer of ovarian hormones into the ovary in the periovarian vascular complex: 1/ direct hormone permeation from the ovarian vein into the adjacent branches of the ovarian artery through the counter-current mechanism; 2/ indirect permeation of ovarian hormones consisting of two stages. The first stage includes the permeation of hormones from lymph leaving the ovary via the subovarian lymphatic vascular network as well as lymph and venous blood, leaving the mesosalpinx and going to capillaries and tiny venous vessels in the entire mesovarium. These tiny mesovarium vessels connect and then branch out again to form the veno-venous network on the surface of branches of the ovarian artery. The second stage includes the permeation of hormones from the veno-venous blood into the branches of the ovarian artery. The authors present a hypothesis that the retrograde transfer of ovarian hormones may participate in the feedback regulation of ovarian function. The relationship between the retrograde transfer of ovarian hormones in the area of periovarian vascular complex and local elevation of steroid hormone concentrations in blood supplying the oviduct and uterus is presented. The paper also includes suggestions for future research.  相似文献   

4.
This study was designed to measure ovarian hormones prior to and during the first estrous cycle in guinea pigs. Blood was obtained from 12 animals throughout the first estrous cycle. Ovaries and peripheral serum were obtained from 25 additional animals at various stages of development prior to and after first ovulation. Estradiol, progesterone, androstenedione, and testosterone were measured in all sera and half of the ovaries. The remaining ovaries were fixed for histology. Serum estradiol was nondetectable until a few days before first ovulation, but was present in the ovary throughout development. Serum progesterone was nondetectable until the day of ovulation, but the luteal phase pattern was similar to that observed in adults. Serum androgens were detectable throughout development, with androstenedione higher than testosterone. The immature ovary contained more testosterone than androstenedione, but this pattern was reversed after ovulation. These results indicate that the immature ovary in the guinea pig contains minimal amounts of estradiol and progesterone, the first estrous cycle is similar to that in adults, and that the pattern of ovarian androgen content changes during the peripubertal period.  相似文献   

5.
El-Shahat KH  Kandil M 《Theriogenology》2012,77(8):1513-1518
The present study was designed to evaluate the changes in the concentrations of different antioxidants, such as glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), in the follicular fluid collected from different follicular size categories in relation to stage of estrous cycle in buffaloes. In addition, malondialdehyde (MDA) as an indicator for lipid peroxidation was also estimated. Fifty pairs of buffalo ovaries were collected from a local slaughterhouse. Based on ovarian structures, the cycle was divided into follicular and luteal phase. The follicles on each pair were classified into three groups; small (≤3 mm), medium (4-9 mm) and large (≥10 mm). The concentrations of SOD, CAT, GSH, and GR in the follicular fluid of each group as well as MDA were estimated. Results indicated that there was a significant decrease (P < 0.05) in the average numbers of small follicles obtained at the follicular phase than those obtained at the luteal phase of the cycle. However, the mean numbers of the large sized follicles was significantly increased (P < 0.05) in the follicular phase than in the luteal phase. Large follicles obtained at the luteal phase had a significantly higher (P < 0.05) concentration of GSH than that obtained from small ones. A significant (P < 0.05) effect of follicular size on GR concentrations was observed. The concentration of SOD tended to be higher in large follicles obtained at the follicular phase than that collected at the luteal phase (56.7 ± 3.7 vs. 28.1 ± 6.7 U/mL, respectively). On the contrary, a significantly higher concentration (P < 0.05) of SOD was recorded in small follicles as compared with medium and large follicles collected at the luteal phase. CAT concentrations did not significantly differ among different follicular sizes between follicular and luteal phases as well as within each phase. Malondialdehyde concentration was significantly decreased (P < 0.05) in the follicular fluid obtained from small follicles collected at the follicular phase compared with those obtained at the luteal phase. In conclusion, the present study showed that the concentrations of enzymatic antioxidants except for CAT vary according to the follicle size and the stage of the estrous cycle suggesting their possible role in the process of follicular development during estrous cycle in buffaloes.  相似文献   

6.
The purpose of the present study was to determine whether there is a menstrual cycle effect on heart rate, blood pressure and heart rate variability. 10 healthy regularly cycling females (age 19-23 years) were studied during the follicular phase and luteal phase over two month. We found significant changes in heart rate, AMo and stress index during the menstrual cycle with a minimum in the follicular phase and maximum in the luteal phase. The HF and LF components decreased more during the luteal phase than during the follicular phase (p < 0.05), whereas a tendency for increase LF/HF was observed in the luteal phase. In the follicular phase SDNN, pNN50, Mo, MxDMn were significantly higher than in the luteal phase. Furthermore, the VIK was higher in the luteal phase compared to the follicular phase (p = 0.003). Blood pressure did not show any significant change during both these phases of the menstrual cycle. These findings indicate that sympathetic nervous activity in the luteal phase is greater than in the follicular phase, whereas parasympathetic nervous activity is predominant in the follicular phase. A difference of the balance of ovarian hormones may be responsible for these changes of autonomic functions during the menstrual cycle.  相似文献   

7.
Blood flow to the ovary varies dramatically in both magnitude and distribution throughout the estrous cycle to meet the hormonal and metabolic demands of the ovarian parenchyma as it cyclically develops and regresses. Several vascular components appear to be critical to vascular regulation of the ovary. As a first step in resolving the role of the resistance arteries and their paired veins in regulating ovarian blood flow and transvascular exchange, we characterized the architecture and intravascular pressure profile of the utero-ovarian resistance artery network in an in vivo preparation of the ovary of the anesthetized Golden hamster. We also investigated estrous cycle-dependent changes in resistance artery tone. The right ovary and the cranial aspect of the uterus in 26 female hamsters were exposed for microcirculatory observations. Estrous-cycle phase was determined in each animal before experimentation. The utero-ovarian vascular architecture was determined and resistance artery diameters were measured in each animal by video microscopy. Servo-null intravascular pressure measurements were made throughout the uteroovarian arterial network in 11 of the animals. Architectural data showed a complex anastomotic network jointly supplying the uterus and ovary. Resistance arteries showed a high degree of coiling and close apposition to veins, maximizing countercurrent-exchange capabilities. Arterial pressure dropped below 60% of systemic arterial pressure before the arteries entered the ovary. Both the ovarian artery and the uterine artery, which jointly feed the ovary, showed cycle day-dependent changes in diameter. Arterial diameters were smallest on the day following ovulation, during the brief luteal phase of the hamster. The data show that resistance arteries comprise a critical part of a complex network designed for intimate local communication and control and suggest that these arteries may play an important role in regulating ovarian blood flow in an estrous cycle-specific manner.  相似文献   

8.
The levels of progesterone, testosterone and estradiol-17β in serum samples from two female Asian elephants were measured for the period of 32 months from February 1987 to September 1989. Serum samples were collected weekly from unanesthetized elephants. Each elephant showed eight ovarian cycles in 32 months. Ovarian cycles, characterized by changes in concentrations of serum progesterone, averaged 16.8 ± 0.6 (mean ± SEM. n = 14) weeks in length. The changes in concentrations of testosterone in the serum showed a similar pattern to those of progesterone with a striking increase noted during the luteal phase. The highest levels of serum estradiol-17β were noted when progesterone levels showed low basal values. These results suggest that estradiol-17β may be an index of follicular maturation during the estrous cycle in Asian elephants, and that the ovaries of Asian elephants may produce testosterone in the luteal phase.  相似文献   

9.
The effects on spontaneous ovulation associated with the unilateral or bilateral sectioning of the superior ovarian nerves (SON) were analyzed in guinea pigs at different time intervals of the estrous cycle. Day 1 of the estrous cycle was defined as the day when the animal presents complete loss of the vaginal membrane (open vagina). Subsequent phases of the cycle were determined by counting the days after Day 1. All animals were autopsied on the fifth day of the estrous cycle after surgery. Sectioning the right, left, or both SONs on day 5 (early luteal phase) resulted in a significant increase in the number of fresh corpora lutea. Ovulation increased significantly when the left SON (L-SON) was sectioned during late follicular phase (day 1) and medium luteal phase (day 8). When surgery was performed on days 1 or 8, neither sectioning the right SON (R-SON) nor sectioning the SON bilaterally had an apparent effect on ovulation rates. Similarly, ovulation rates were not affected when unilateral (right or left) or bilateral sectioning of the SON was performed during late luteal phase two (day 12). Unilateral or bilateral sectioning of the SON performed during the early luteal phase (day 5) was associated with a significant decrease in uterine weight. A comparable effect was observed when the L-SON was sectioned during late follicular phase (day 1), or medium luteal phase (day 8). No effects on uterine weight were observed when unilateral or bilateral sectioning of the SON was performed during late luteal phase. Our results suggest that in the guinea pig the SON modulates ovulation, and that the degree of modulation varies along the estrous cycle. The strongest influence of the SONs on ovulation occurs during early luteal phase, and decrease thereafter, being absent by late luteal phase. In addition, sectioning the left or the right SON caused different responses by the ovaries of adult guinea pigs. This paper discusses the mechanisms by which ovulation increased when the SON was surgically cut.  相似文献   

10.
The sustainability and production of collared peccary (Pecari tajacu) has been studied in the last few years; however, further information on its reproduction is necessary for breeding systems success. Understanding folliculogenesis aspects will contribute to effective reproductive biotechniques, which are useful in the preservation and production of wildlife. The aim of this study was-to evaluate the ovarian folliculogenesis in collared peccary. Ovaries from six adult females of collared peccary were obtained through ovariectomy and analyzed. These were fixed in aqueous Bouin's solution and sectioned into 7 microm slices, stained with hematoxilin-eosin and analyzed by light microscopy. The number of pre-antral and antral follicles per ovary was estimated using the Fractionator Method. The follicles, oocytes and oocyte nuclei were measured using an ocular micrometer. Results showed that the length, width, thickness, weight, and the gross anatomy of the right and left ovaries were not significantly different. However, the mean number of corpora lutea was different between the phases of the estrous cycle (p<0.05), with the highest mean in the luteal phase. Primordial follicles were found in the cortex; the oocytes were enveloped by a single layer of flattened follicular cells. In the primary follicles, proliferation of the follicular cells gave rise to cuboidal cells (granulosa cells). The secondary follicle was characterized by two or more concentric layers of cuboidal cells (granulosa), beginning of antrum formation, and the presence of pellucid zone and theca cells. Antral follicles were characterized by a central cavity (antrum), the presence of cumulus oophorus and theca layers (interna and externa). In the right ovary, the values of the primordial and primary follicles were similar, but significantly different from the secondary ones (p<0.05). In the left ovary, significant differences were observed between all follicles in the follicular phase (p<0.05); the mean number of primordial and primary follicles was similar in the luteal phase. The mean number of pre-antral follicles and antral follicles in the follicular phase was higher in the left ovary (p<0.05). The mean number of antral follicles in the luteal phase was similar in both ovaries. We also found significant differences in mean diameter of preantral follicles, oocyte, granulosa layer and oocyte nucleus during the estrous cycle. In the antral follicles a significant difference was observed only in follicular diameter (p<0.05). The predominance of active primordial and primary follicles was found in both phases; otherwise the secondary follicles and antral follicles showed a high degree of degeneration. The results obtained in the present work will strengthen the development of biotechnology programs to improve the productive potential and conservation of the collared peccary.  相似文献   

11.
12.
Cyclooxygenase, the enzyme that converts arachidonate to prostaglandins, plays a regulatory role in vasodilation under normal and pathological conditions. Studies were conducted to determine the effects of reproductive phase and lipopolysaccharide (LPS) on production of PGI2 and amounts of cyclooxygenase protein in uterine, mammary, mesenteric, and renal arteries. Arteries were collected from ewes during the follicular (Day 0 = estrus) or luteal (Day 10) phase of the estrous cycle and were cultured in the presence of LPS. After 24 h, media were collected and analyzed for 6-keto-PGF1alpha, the stable metabolite of PGI2. In addition, arteries were collected and homogenized and the relative concentration of cyclooxygenase was determined via Western analysis. Lipopolysaccharide stimulated PGI2 production in all four-artery types from both follicular and luteal phase ewes (p < 0.001). Upon LPS stimulation, uterine and mammary arteries produced more PGI2 compared to mesenteric and renal arteries (p = 0.04). The phase of estrous cycle did not affect PGI2 production by any of the artery populations exposed to LPS (p = 0.35). There was no cyclooxygenase-2 in untreated uterine and mammary arteries and no cyclooxygenase-2 was detected in untreated or LPS-treated mesenteric and renal arteries. In contrast, LPS-treated uterine and mammary arteries from luteal phase ewes had higher (p = 0.064) cyclooxygenase-2 concentrations than those from follicular phase ewes. These results suggest that the hormone conditions of the follicular (high estrogen) and luteal (high progesterone) phases of the ovarian cycle play a role in regulating uterine and mammary artery but not mesenteric and renal artery response to LPS.  相似文献   

13.
Wistar strain albino rats were hysterectomized and the estrous cycle was compared with sham operated controls. Duration of estrous cycle in hysterectomized rats increased markedly with significant delay in the luteal phase and this was correlated to the inhibited follicular development of ovary. When these rats were treated with PGF2 alpha and PMSG and subjected to physical exercises, the estrous cycle was synchronised and the ovaries of such animals had active follicular development. Thus the deranged operation of sexual cycle in hysterectomized rats was regulated through physical exercises.  相似文献   

14.
Ovarian tissues are thought to require ascorbate as an antioxidant and enzymatic cofactor for the processes of steroid and collagen synthesis. We measured the concentrations of total ascorbate and oxidized ascorbate (dehydroascorbate, DHA) in ovarian stroma, follicles and corpora lutea (CL) throughout the estrous cycle and pregnancy of the sow. Both total ascorbate and DHA concentrations were greatest in luteal tissue and lowest in ovarian stroma across all stages examined. Within the CL, total ascorbate levels were lowest during the early, early-mid, and late luteal phase and were elevated during the mid-luteal phase. Luteal total ascorbate concentrations were further elevated during early pregnancy and were comparable to mid-luteal phase concentrations during the remainder of gestation. Luteal DHA concentrations decreased from mid to late luteal phase, and were elevated throughout pregnancy. As the CL aged during the cycle, the DHA/total ascorbate ratio decreased and remained low throughout pregnancy. Total ascorbate concentrations in follicular tissue increased during the follicular phase and were lowest during the early luteal phase. The DHA concentrations and DHA/total ascorbate ratios in follicular tissue did not differ with stage. Total ascorbate and DHA concentrations in ovarian stroma were low and did not vary with stage. We conclude that periods of maximal luteal and follicular function are associated with increased concentrations of total ascorbate within the tissue. Furthermore, luteolysis appears to be associated with depletion of luteal ascorbate species.  相似文献   

15.
Changes and local distribution of oviductal progesterone (P(4)) concentration during the estrous cycle and early pregnancy in cows were investigated. Intact reproductive tracts were collected from 16 Holstein cows at an abattoir. Samples were classified in to 4 stages (follicular, postovulatory, luteal and early pregnant,< 20 d) based on visual observation of corpus luteum (CL), uterine characteristics and luteal P(4) concentrations. Oviducts were separated from the uterus at the utero-tubal junction and divided into 4 parts: fimbriae, proximal, medial and distal parts. Luteal tissue samples were also collected. Progesterone levels in oviductal and luteal tissues were determined by radioimmunoassay (RIA). Comparatively higher (P < 0.001) P(4) levels were found in stages with a functioning CL ( luteal phase and early pregnancy) than in those with a regressing CL (follicular phase and post ovulation). The oviduct ipsilateral to the CL bearing ovary during the luteal phase and early pregnancy showed higher ( P < 0.001) P(4) concentrations than the contralateral side. Such a difference was not observed during the follicular phase or post ovulation. The ipsilateral oviduct to the functioning CL at early pregnancy showed higher (P <0.05) P(4) levels than at the luteal phase, while no significant difference in luteal P(4) levels between these 2 stages was observed. Neither were any differences in P(4) concentration within the oviduct observed during any phase of the estrous cycle or during early pregnancy. A positive relationship between luteal and oviductal P(4) concentrations was noted. In conclusion, changes in P(4) levels in the oviduct depend on the location and functional stage of the CL. Localized levels of P(4) in the oviduct may be due to local delivery of P(4) from the CL.  相似文献   

16.
Dopamine (DA) blockade during anestrus or early spring transition can facilitate ovarian recrudescence and advance the timing of the first ovulation of the season. Some laboratories have reported variable results using DA antagonists to stimulate follicular growth during the mid-portion of the anestrual period. Differences in DA antagonist efficacy may be due to the FSH secretory status of the anestrous mare and the presence or absence of functional ovarian FSH receptors. We hypothesize that direct ovarian dopaminergic input can affect follicular growth through regulation of FSH receptor (FSHr) populations. To investigate this, the amount of DA D1 and D2 receptor (D1r, D2r) and FSHr mRNA was quantified in ovarian tissues in anestrous and mares expressing estrus at typical intervals that are detected during the breeding season. Ovaries (n=26) were collected from 10 anestrous mares and 13 mares that had initiated estrous cycles (n=8 luteal; n=5 follicular phase). The quantity of D1r and D2r mRNA and FSHr mRNA was determined in cortex of both groups and granulosa/theca (those having initiated estrous cycles) tissues by semi-quantitative polymerase chain reaction using the comparative cycle time method. The reference gene was glyceraldehyde-3-phosphate dehydrogenase. The fold-change for each sample was calculated based on a calibrator sample. Fold-change values for D1r and D2r were the dependent variable and tissue was the independent variable in a one-way ANOVA. Results of fold-change in FSHr were compared by ANCOVA due to unequal sample sizes from each mare. Correlations between receptors within each tissue type were determined. For each receptor type and tissue, correlations between follicular and luteal phases were determined. The fold-change of D1r mRNA was less than D2r mRNA in all tissue types and between seasons. The quantity of D2r message in ovarian cortex was greater (p<0.05) during anestrus than after estrous cycles had been initiated. Fold-change in D2r in granulosa/theca was not different dependant on estrous cycle phase or follicle size. Quantity of FSHr mRNA was less in anestrous ovarian cortex and greater after estrous cycles had been initiated. FSHr mRNA fold-change in the ovarian cortex after estrous cycle initiation was not different between estrous cycle phases, but was greater in smaller (<30mm) follicles compared with larger (>/=30mm) follicles. We have demonstrated an inverse temporal relation between ovarian D2r and FSHr in mares dependant upon season. The functional significance of this relationship deserves further study.  相似文献   

17.
Estrogen and progesterone concentrations in milk during the estrous cycle were estimated in 18 normally cycling Holstein dairy cows. The estrogen and progesterone concentrations in milk during the estrous cycle followed the pattern described for them in blood in the corresponding period. During most of the estrous cycle, estrogen concentration remained at approximately 200 pg/ml and reached a proestrous peak of 360 +/- 127 pg/ml on day 19. The progesterone concentration in milk during the estrous cycle increased to a peak on day 13 (45.5 +/- 6.6 ng/ml) and thereafter declined towards estrus. Estrus detection/prediction based on milk progesterone concentrations appears feasible in view of the significant differences in milk progesterone concentrations between the early luteal (post-ovulatory), luteal and rapid follicular growth periods of the estrous cycle.  相似文献   

18.
Experiments were conducted to elucidate the mechanisms of active immunization against inhibin on ovarian follicular development and selection in guinea pigs. Estrous cycle was synchronized in experimental guinea pigs by implanting progesterone containing tubes. Antibodies that bound 125I-labeled bovine inhibin were produced by all guinea pigs receiving the inhibin vaccine (recombinant ovine alpha-subunit in oil emulsion) without any effects on duration of the estrous cycle. Active immunization against inhibin increased the plasma concentrations of progesterone during the luteal phase and the plasma concentrations of estradiol but failed to increase the plasma concentration of follicle-stimulating hormone (FSH) during preovulatory period. The treatment also increased the number of corpora lutea (from 1.3+/-0.3 to 7.0+/-1.6 per each ovary), and preovulatory sized follicles (from 1.8+/-0.6 to 7.0+/-1.6 per each ovary), and follicles stained positively for inhibin alpha-subunit (from 2.3+/-0.5 to 6.3+/-1.3 per each ovary) significantly. The results indicate that active immunization against inhibin enhances ovulation rate by affecting the follicle selection and only dominant follicle can be stained for inhibin alpha-subunit in guinea pigs. This study is firstly to provide direct evidence that inhibins play important role in follicle selections in guinea pigs.  相似文献   

19.
Thirty-two lactating Holstein cows were assigned to 1 of 4 groups in a randomized block design using a 2 X 2 factorial arrangement of treatments. Recombinant bovine growth hormone (rbSt; 25 mg/day) or placebo was administered beginning at Day 35 or 70 postpartum. All cows began treatment approximately 3 days post-estrus. Blood samples were collected at least once daily for a 70-day period to determine the concentration of progesterone and the duration of the luteal and follicular phases. During estrous cycles 1 and 3, frequent blood samples were taken (every 10 min for 8 h) 24 and 60 h after the onset of luteal regression. These samples were assayed for luteinizing hormone (LH), and samples coincident with the second LH pulse detected were assayed for estradiol. Ultrasonography was used to determine the size of the largest ovarian follicle from Day 17 until ovulation in estrous cycles 1 and 3. Luteal life span, length of the follicular phase, and diameter of the largest follicle were not affected by treatment with rbSt. Administration of rbSt increased the concentration of progesterone in plasma during the first two luteal phases (p less than 0.01). Progesterone was elevated during the mid-luteal phase of cycle 3 in rbSt-treated cows that began treatment about Day 35 postpartum but not in cows that began treatment on Day 70 postpartum (Treatment X Stage X Day, p less than 0.01). During the first follicular phase studied, LH pulse frequency was higher (p = 0.06) in rbSt-treated cows than in cows receiving the placebo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A study was undertaken to identify urinary estrogen and progesterone metabolites in the female Indian rhinoceros (Rhinoceros unicornis). Measurements of these metabolites were then used to monitor ovarian function and establish normal levels and patterns of steroid excretion during the estrous cycle and pregnancy. Urine samples were analyzed for estrone sulfate and pregnanediol-3-glucuronide (PDG) by direct radioimmunoassays. Both hormones produced discrete profiles reflecting ovarian activity in nonconceptive cycles. The estrous cycle was observed to be 48 days (range 39–64) with a mean follicular phase of 14.8 days (range 13–19), followed by a mean luteal phase of 19 days (range 17–21). Of the single gestation monitored, PDG levels rose above luteal phase levels by the third month after breeding and remained elevated throughout gestation. The combined estrogen and progesterone metabolite profiles present a complete evaluation of ovarian steriod production in the mature female Indian rhinoceros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号