首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have identified proteins involved in the peptidyl-tRNA-binding site of rat liver ribosomes, using an affinity label designed specifically to probe the P-site in eukaryotic peptidyl transferase. The label is a 3-terminal pentanucleotide fragment of N-acetylleucyl-tRNA in which mercury atoms have been added at the C-5 position of the three cytosine residues. This mercurated fragment can bind to rat liver peptidyl transferase and function as a donor of N-acetylleucine to puromycin. Concommitant with this binding, the mercury atoms present in the fragment can form a covalent linkage with a small number of ribosomal proteins. The major proteins labeled by this reagent are L5 and L36A. Four protein spots are found labeled to a lesser extent: L10, L7/7a, L3/4 and L25/31. Each of these proteins, therefore, is implicated in the binding of the 3-terminus of peptidyl-tRNA.The results presented here are correlated with other investigations of the structure-function aspects of rat liver peptidyl transferase. Using these data, we have constructed a model for the arrangement of proteins within this active site.  相似文献   

2.
The peptidyl transferase activity of polysomes from Escherichia coli, rabbit reticulocytes and chick embryos, assayed in the fragment reaction, is 3- to 10-fold lower than the corresponding activity of single ribosomes. The polysomal peptidyl transferase activity is restored in full under conditions of in vitro protein synthesis that result in conversion of polysomes to single ribosomes. Thus, the peptidyl transferase center is masked in translating ribosomes. Unmasking of peptidyl transferase, however, does not require the release of ribosomes from messenger RNA: it is also seen upon treatment of polysomes with puromycin, under conditions in which polysomes remain intact. Apparently, release of nascent polypeptide chains is sufficient to allow access of formylmethionyl hexanucleotide substrate to the peptidyl transferase site.  相似文献   

3.
Treatment of rats with the aminonucleoside of puromycin, which increases the incorporation of labelled phenylalanyl-tRNA into polypeptide chains in liver ribosome preparations studied in vitro, did not change the factor-dependent binding of fMet-tRNA f Met to ribosomes nor the peptidyl transferase function of the ribosomes. Peptidyl transferase function, as measured by fMet-tRNA f Met-puromycin formation, was comparable in the free and bound ribosome preparations. Similarly, the factor-dependent binding of fMet-tRNA f Met to ribosomes was the same in free ribosome preparations obtained from rat liver as it was in bound ribosome preparations that had been freed of membranes by puromycin incubation and high salt wash.  相似文献   

4.
Photochemical oxidation of Escherichia coli 50 S ribosomal subunits in the presence of methylene blue or Rose Bengal causes rapid loss of peptidyl transferase activity. Reconstitution experiments using mixtures of components from modified and unmodified ribosomes reveal that both RNA and proteins are affected, and that among the proteins responsible for inactivation there are both LiCl-split and core proteins. The proteins L2 and L16 from the split fraction and L4 from the core fraction of unmodified ribosomes were together nearly as effective as total unmodified proteins in restoring peptidyl transferase activity to reconstituted ribosomes when added with proteins from modified ribosomes. These three proteins are therefore the most important targets identified as responsible for loss of peptidyl transferase activity on photo-oxidation of 50 S ribosomal subunits.  相似文献   

5.
The peptidyl transferase reaction, as measured by the formation of peptidyl-puromycin, was compared for free ribosomes and ribosomes bound to two types of membrane, the endoplasmic reticulum and the outer nuclear membrane. In most respects the reaction catalyzed by the three types of ribosome was similar, demonstrating that interaction of the 60 S ribosomal subunit with the membrane has little effect on the functioning of peptidyl transferase, a 60 S protein. However, both the rate and extent of synthesis of peptidyl puromycin were lower for ribosomes bound to the nuclear membrane than for free or microsome-bound ribosomes. This difference appears to be a direct consequence of the ribosome-membrane interaction, since ribosomes stripped from the nuclear membrane could not be distinguished from the other classes of ribosome.  相似文献   

6.
An analog of the peptidyl transferase inhibitor sparsomycin was a competitive inhibitor (Ki = 1.8 microM) of peptidyl-puromycin synthesis on E. coli polysomes. Preincubation of polysomes with the compound enhanced the degree of inhibition of peptide bond formation. A model for the involvement of a histidine residue in peptidyl transferase activity is presented as a result of our observations which include direct association of [3H] labelled analog with 70S ribosomes. The correct oxidation state of sulfur in the compound was necessary for the "preincubation effect" and entry of the compound into bacterial cells.  相似文献   

7.
Three new photoreactive tRNA derivatives have been synthesized for use as probes of the peptidyl transferase center of the ribosome. In two of these derivatives, the 3' adenosine of yeast tRNA(Phe) has been replaced by either 2-azidodeoxyadenosine or 2-azido-2'-O-methyl adenosine, while in a third the 3'-terminal 2-azidodeoxyadenosine of the tRNA is joined to puromycin via a phosphoramidate linkage to generate a photoreactive transition-state analog. All three derivatives bind to the P site of 70S ribosomes with affinities similar to that of unmodified tRNA(Phe) and can be cross-linked to components of the 50S ribosomal subunit by irradiation with near-UV light. Characteristic differences in the cross-linking patterns suggest that these tRNA derivatives can be used to follow subtle changes in the position of the tRNA relative to the components of the peptidyl transferase center.  相似文献   

8.
Mitochondria of the yeast Saccharomyces cerevisiae assemble their ribosomes from ribosomal proteins, encoded by the nuclear genome (with one exception), and rRNAs of 15S and 21S, encoded by the mitochondrial genome. Unlike cytoplasmic rRNA, which is highly modified, mitochondrial rRNA contains only three modified nucleotides: a pseudouridine (Psi(2918)) and two 2'-O-methylated riboses (Gm(2270) and Um(2791)) located at the peptidyl transferase centre of 21S rRNA. We demonstrate here that the yeast nuclear genome encodes a mitochondrial protein, named Mrm2, which is required for methylating U(2791) of 21S rRNA, both in vivo and in vitro. Deletion of the MRM2 gene causes thermosensitive respiration and leads to rapid loss of mitochondrial DNA. We propose that Mrm2p belongs to a new class of three eukaryotic RNA-modifying enzymes and is the orthologue of FtsJ/RrmJ, which methylates a nucleotide of the peptidyl transferase centre of Escherichia coli 23S rRNA that is homologous to U(2791) of 21S rRNA. Our data suggest that this universally conserved modified nucleotide plays an important function in vivo, possibly by inducing conformational rearrangement of the peptidyl transferase centre.  相似文献   

9.
The function of the highly conserved and accessible region of domain IV of 23S rRNA (positions 1900-1981 in Escherichia coli 23S rRNA) was investigated by subjecting it to a random mutagenesis procedure that produced single-site mutations efficiently. Nine single-site mutants were selected that were recessive lethal. High levels of mutated 23S rRNA were expressed in E. coli and extracted ribosomes were investigated for their content of mutated rRNA. The peptidyl transferase activity of the ribosomes was also estimated using a newly developed method involving selective inhibition of chromosome-encoded ribosomes by clindamycin. Two of the mutants, U1940A and U1955G, yielded 50S subunits that were defective in subunit-subunit association but active in peptidyl transferase activity and five, U1926C, U1946C, U1979C, U1982A and G1984A, produced 50S subunits that were defective in both subunit-subunit interactions and peptidyl transferase activity. We infer that the large conserved rRNA region generates a complex structure that plays an essential role in maintaining and modulating subunit-subunit interactions and argue that its involvement in the peptidyl transferase centre is secondary, possibly involving the correct alignment of protein L2.  相似文献   

10.
O W Odom  B Hardesty 《Biochimie》1987,69(9):925-938
Fluorescence techniques were used to detect changes in the conformation of tRNA(Phe) that may occur during the peptidyl transferase reaction in which the tRNA appears to move between binding sites on ribosomes. Such a conformational change may be a fundamental part of the translocation mechanism by which tRNA and mRNA are moved through ribosomes. E. coli tRNA(Phe) was specifically labeled on acp3U47 and s4U8 or at the D positions 16 and 20. The labeled tRNAs were bound to ribosomes as deacylated tRNA(Phe) or AcPhe-tRNA. Changes in fluorescence quantum yield and anisotropy were measured upon binding to the ribosomes and during the peptidyl transferase reaction. In one set of experiments non-radiative energy transfer was measured between a coumarin probe at position 16 or 20 and a fluorescein attached to acp3U47 on the same tRNA(Phe) molecule. The results indicate that the apparent distance between the probes increases during deacylation of AcPhe-tRNA as a result of peptide bond formation. All of the results are consistent with but in themselves do not conclusively establish that tRNA undergoes a conformational change as well as movement during the peptidyl transferase reaction.  相似文献   

11.
The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.  相似文献   

12.
Radioactive ribosomes from Escherichia coli were treated with increasing concentrations of NH4Cl in the presence of 50% ethanol. The resulting particles were tested for peptidyl transferase activity as well as for the binding of (U)C-A-C-C-A-Leu-Ac, (U)C-A-C-C-A-Leu, chloramphenicol, lincomycin and erythromycin. At the same time the proteins present in the particles were quantitatively estimated and the amount of each related to the residual activity displayed by the treated ribosomes. It was found that the loss of protein L16 closely paralleled the inactivation of the particles implying an important role for this protein in the structure of the peptidyl transferase center.  相似文献   

13.
A universally conserved adenosine, A2451, within the ribosomal peptidyl transferase center has been proposed to act as a general acid-base catalyst during peptide bond formation. Evidence in support of this proposal came from pH-dependent dimethylsulfate (DMS) modification within Escherichia coli ribosomes. A2451 displayed reactivity consistent with an apparent acidity constant (pKa) near neutrality, though pH-dependent structural flexibility could not be rigorously excluded as an explanation for the enhanced reactivity at high pH. Here we present three independent lines of evidence in support of the alternative interpretation. First, A2451 in ribosomes from the archaebacteria Haloarcula marismortui displays an inverted pH profile that is inconsistent with proton-mediated base protection. Second, in ribosomes from the yeast Saccharomyces cerevisiae, C2452 rather than A2451 is modified in a pH-dependent manner. Third, within E. coli ribosomes, the position of A2451 modification (N1 or N3 imino group) was analyzed by testing for a Dimroth rearrangement of the N1-methylated base. The data are more consistent with DMS modification of the A2451 N1, a functional group that, according to the 50S ribosomal crystal structure, is solvent inaccessible without structural rearrangement. It therefore appears that pH-dependent DMS modification of A2451 does not provide evidence either for or against a general acid-base mechanism of protein synthesis. Instead the data suggest that there is pH-dependent conformational flexibility within the peptidyl transferase center, the exact nature and physiological relevance of which is not known.  相似文献   

14.
rRNA modifications and ribosome function   总被引:23,自引:0,他引:23  
The development of three-dimensional maps of the modified nucleotides in the ribosomes of Escherichia coli and yeast has revealed that most (approximately 95% in E. coli and 60% in yeast) occur in functionally important regions. These include the peptidyl transferase centre, the A, P and E sites of tRNA- and mRNA binding, the polypeptide exit tunnel, and sites of subunit-subunit interaction. The correlations suggest that many ribosome functions benefit from nucleotide modification.  相似文献   

15.
The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.  相似文献   

16.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.  相似文献   

17.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

18.
R Vince  J Brownell  K L Fong 《Biochemistry》1978,17(25):5489-5493
A photoaffinity labeling puromycin analogue, Nepsilon-(2-nitro-4-azidophenyl)-L-lysinyl puromycin aminonucleoside (NAP-Lys-Pan), was synthesized and used for investigation of the peptidyl transferase center of 70S riobsomes. Visible light irradiation of NAP-Lys-Pan led to covalent linkage of the analogue with Escherichia coli ribosomes. In a subsequent step, poly(uridylic acid) was employed to direct Ac[14C]Phe-tRNA to the P sites of the photolabeled ribosomes. Transpeptidation of Ac[14C]phenylalanine to the bound NAP-Lys-Pan resulted in selective incorporation of radioactive label into the peptidyl transferase A site. Dissociation of the ribosomes into subunits, and digestion of the RNA components, indicated that the radioactive label was incorporated into a protein fraction of the 50S subunit.  相似文献   

19.
W D Picking  O W Odom  B Hardesty 《Biochemistry》1992,31(50):12565-12570
A coumarin derivative was covalently attached to either the amino acid or the 5' end of phenylalanine-specific transfer RNA (tRNA(phe)). Its fluorescence was quenched by methyl viologen when the tRNA was free in solution or bound to Escherichia coli ribosomes. Methyl viologen as a cation in solution has a strong affinity for the ionized phosphates of a nucleic acid and so can be used to qualitatively measure the presence of RNA in the immediate vicinity of the tRNA-linked coumarins upon binding to ribosomes. Fluorescence lifetime measurements indicate that the increase in fluorescence quenching observed when the tRNAs are bound into the peptidyl site of ribosomes is due to static quenching by methyl viologen bound to RNA in the immediate vicinity of the fluorophore. The data lead to the conclusion that the ribosome peptidyl transferase center is rich in ribosomal RNA. Movement of the fluorophore at the N-terminus of the nascent peptide as it is extended or movement of the tRNA acceptor stem away from the peptidyl transferase center during peptide bond formation appears to result in movement of the probe into a region containing less rRNA.  相似文献   

20.
To study the mechanism by which chloramphenicol inhibits bacterial protein synthesis, we examined the kinetics of the puromycin-induced release of peptides from transfer ribonucleic acid (tRNA) in the presence and in the absence of chloramphenicol. Washed Escherichia coli ribosomes with nascent peptides which had been radioactively labeled in vivo were used for this study. When such ribosomes were incubated in the presence of 10 mug of puromycin per ml, approximately one-fourth of the radioactive peptide material was rapidly released from tRNA. This rapid, puromycin-dependent reaction is assumed to be equivalent to the peptidyl transferase reaction. Chloramphenicol inhibited the extent of the puromycin-induced release of peptides by only 50%, demonstrating that some of the peptide chains which are present on active ribosomes react with puromycin, even in the presence of chloramphenicol. The addition of the supernatant fraction and guanosine triphosphate (GTP) increased the extent of the puromycin-induced release; this additional release was completely inhibited by chloramphenicol. Peptidyl chains on washed ribosomes prepared from chloramphenicol-inhibited cells were not released by puromycin in the presence of chloramphenicol and reacted slowly with puromycin in the absence of chloramphenicol. The release of peptidyl groups from these ribosomes became largely insensitive to chloramphenicol after preincubation of the ribosomes with GTP and the supernatant fraction. We conclude that chloramphenicol does not inhibit the peptidyl transferase reaction as measured by the puromycin-induced release of peptides from tRNA, but rather inhibits some step in the peptide synthesis cycle prior to this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号