首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nakamura Y  Nishio Y  Ikeo K  Gojobori T 《Gene》2003,317(1-2):149-155
Corynebacterium species are members of gram-positive bacteria closely related to Mycobacterium species, both of which are classified into the same taxonomic order Actinomycetales. Recently, three corynebacteria, Corynebacterium efficiens, Corynebacterium glutamicum, and Corynebacterium diphtheriae have been sequenced independently. We found that the order of orthologous genes in these species has been highly conserved though it has been disrupted in Mycobacterium species. This synteny suggests that corynebacteria have rarely undergone extensive genome rearrangements and have maintained ancestral genome structures even after the divergence of corynebacteria and mycobacteria. This is the first report that the genome structures have been conserved in free-living bacteria such as C. efficiens and C. glutamicum, although it has been reported that obligate parasites such as Mycoplasma and Chlamydia have the stable genomes. The comparison of recombinational repair systems among the three corynebacteria and Mycobacterium tuberculosis suggested that the absence of recBCD genes in corynebacteria be responsible for the suppression of genome shuffling in the species. The genome stability in Corynebacterium species will give us hints of the speciation mechanism with the non-shuffled genome, particularly the importance of horizontal gene transfer and nucleotide substitution in the genome.  相似文献   

2.
The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.  相似文献   

3.
During the last decades, the majority of Brazilian Corynebacterium diphtheriae isolates were shown to be capable to metabolize sucrose, sometimes leading to erroneous identification as a non-diphtheric Corynebacterium species. The sequencing of the polymorphic region of the RNA polymerase beta subunit-encoding gene (rpoB) is an important taxonomic tool for identification of corynebacteria. The present study aimed to investigate the rpoB gene polymorphic features of sucrose-fermenting and non sucrose-fermenting strains. The results showed that sucrose-fermenting strains presented rpoB gene polymorphic regions with more than 98% similarity with the sequences deposited in the gene bank corresponding to non sucrose-fermenting strains. Data indicate that sucrose-fermenting isolates may act as a variant of C. diphtheriae biotype mitis. In addition we alert that sucrose-fermenting strains should not be discarded as contaminants mainly in countries where the possibility of isolation of this variant is higher.  相似文献   

4.
The genetic structure of C. dipthteriae toxigenic strains isolated in Russia during the period of more than 50 years was analysed. The use of the method of ribotyping made it possible to register 17 C. diphtheriae ribotypes. The study revealed that the genetic structure of C. diphtheriae population varied in the dynamics of the epidemic process: each epidemic cycle characterized by predominant spread of epidemic strains of definite biovars and ribotypes. Thus, C. diphtheriae strains of biovar gravis, ribotype M11, dominated in the 40-60 years and C. diphtheriae strains of biovar mitis, closely related ribotypes M1 and M1v, dominated in the 80 years. During the last epidemic rise of diphtheriae morbidity in the 90 s C. diphtheriae strains of biovar gravis, closely related ribotypes G1 and G4, dominated among circulating strains. The proportion of these ribotypes began to increase 3 years before the rise of morbidity. The data of microbiological monitoring are recommended for use in the prognostication of the development of the epidemic process of diphtheria infection.  相似文献   

5.
N-Acetylneuraminic acid lyase (NAN-lyase) activity has been found to be much higher in the differentiated, murine parietal endodermal cell (PYS-2) in culture than in the related, undifferentiated embryonal teratocarcinoma cell (F9). The level of the enzyme rapidly increases in F9 cells exposed to an inducer of differentiation such as retinoic acid (RA) (10(-7) M). The level of the enzyme increases during log phase of growth of PYS-2 cells and decreases after the cells reach confluence. NAN-lyase from PYS-2 cells has been purified 365-fold and has been partially characterized. While most of the enzyme is freely soluble, at least 16% of the enzyme in PYS-2 cells is associated with the nucleus. The possible function of NAN-lyase in the cell and the significance of its marked elevation during growth and differentiation are discussed in view of the fact that the levels of NAN, neuraminidase, NAN transferases and the enzymes that synthesize and activate NAN, remain essentially unchanged during differentiation.  相似文献   

6.
7.
The homology of genomes within Krylova 's groups I, II and III of C. diphtheriae, including toxigenic C. diphtheriae and their nontoxigenic precursors within the same group, was confirmed by the method of DNA/DNA molecular hybridization; the homology of DNA within the groups was 89-103%, the thermostability of heteroduplexes being high (on the level of homoduplexes ). The heterogeneity of genomes within these 3 groups of cultivar gravis was confirmed, which made it possible to consider C. diphtheriae, groups I, II and III, to belong to different, though closely related species; in intergroup hybridization the homology of DNA varied, as a rule, between 66% and 73%, while the thermostability of heteroduplexes was low: delta T50 was -3 degrees C to -6 degrees C. The differences in genomes (on the level of different species) between 3 groups of C. diptheriae v. gravis on one hand and C. diphtheriae v. mitis C7 (-) tox- and its convertant C7 (beta) tox+ of phage tox+ on the other hand (DNA homology being 56-62%), as well as between C. diphtheriae v. intermedius No. 328 tox+ on one hand and the representatives of 3 groups of C. diphtheriae v. gravis and C. diphtheriae v. mitis, strain C7 (beta) tox+, on the other hand (DNA homology being 42-43%) were revealed. The heterogeneity of genomes (on the level of different genera) was revealed between C. diphtheriae strains, cultivars gravis (groups I, II and III), mitis (C7(-) tox- and C7 (beta) tox+) and intermedius (No. 328 tox+) on one hand and C. ulcerans and C. pseudotuberculosis (ovis) strains on the other hand; DNA homology was 11-17% for C. ulcerans and 22-26% for C. pseudotuberculosis (ovis), the thermostability of heteroduplexes being at the lowest level (delta T50 was -11 degrees C to -13 degrees C). As a result, C. diphtheriae, classified by Bergey as a single species, was found to comprise 5 species detected by means of marking in accordance with their phenotypical features and genome structure, carried out by the method of DNA/DNA molecular hybridization; among these species were group I, II and III strains of cultivar gravis, strain C7 of cultivar mitis and strain No. 328 of cultivar intermedius. C. ulcerans and C. pseudotuberculosis (ovis) strains investigated in this study can possibly be placed outside the genus including 5 C. diphtheriae species.  相似文献   

8.
The bacterial attachment sites of independently isolated Corynebacterium diphtheriae strains C7s and (belfanti)1030 lysogenic for corynebacteriophages beta tox+, omega tox+, and gamma tox- were determined by Southern blot analysis. Both corynebacterial strains contained two distinct bacterial attachment sites (attB1 and attB2). We found that infection by any of the three closely related corynebacteriophages may give rise to single, double, and triple lysogens. In the case of toxigenic C. diphtheriae strains C7s(beta tox+) and C7s(omega tox+), the final yields of diphtheria toxin produced under optimal conditions were equivalent and varied by one-, two-, or threefold depending upon the number of integrated prophage.  相似文献   

9.
Corynebacterium diphtheriae SpaA pili are composed of three pilin subunits, SpaA, SpaB and SpaC. SpaA, the major pilin protein, is distributed uniformly along the pilus shaft, whereas SpaB is observed at regular intervals, and SpaC seems to be positioned at the pilus tip. Pilus assembly in C. diphtheriae requires the pilin motif and the C-terminal sorting signal of SpaA, and is proposed to occur by a mechanism of ordered cross-linking, whereby pilin-specific sortase enzymes cleave precursor proteins at sorting signals and involve the side-chain amino groups of pilin motif sequences to generate covalent linkages between pilin subunits. We show here that two elements of SpaA pilin precursor, the pilin motif and the sorting signal, are together sufficient to promote the polymerization of an otherwise secreted protein by a process requiring the function of the sortase A gene (srtA). Five other sortase genes are dispensable for SpaA pilus assembly. Further, the incorporation of SpaB into SpaA pili requires a glutamic acid residue within the E box motif of SpaA, a feature that is found to be conserved in other Gram-positive pathogens that encode sortase and pilin subunit genes with sorting signals and pilin motifs. When the main fimbrial subunit of Actinomyces naeslundii type I fimbriae, FimA, is expressed in corynebacteria, C. diphtheriae strain NCTC13129 polymerized FimA to form short fibres. Although C. diphtheriae does not depend on other actinomycetal genes for FimA polymerization, this process involves the pilin motif and the sorting signal of FimA as well as corynebacterial sortase D (SrtD). Thus, pilus assembly in Gram-positive bacteria seems to occur by a universal mechanism of ordered cross-linking of precursor proteins, the multiple conserved features of which are recognized by designated sortase enzymes.  相似文献   

10.
Adherence to host tissues mediated by pili is pivotal in the establishment of infection by many bacterial pathogens. Corynebacterium diphtheriae assembles on its surface three distinct pilus structures. The function and the mechanism of how various pili mediate adherence, however, have remained poorly understood. Here we show that the SpaA-type pilus is sufficient for the specific adherence of corynebacteria to human pharyngeal epithelial cells. The deletion of the spaA gene, which encodes the major pilin forming the pilus shaft, abolishes pilus assembly but not adherence to pharyngeal cells. In contrast, adherence is greatly diminished when either minor pilin SpaB or SpaC is absent. Antibodies directed against either SpaB or SpaC block bacterial adherence. Consistent with a direct role of the minor pilins, latex beads coated with SpaB or SpaC protein bind specifically to pharyngeal cells. Therefore, tissue tropism of corynebacteria for pharyngeal cells is governed by specific minor pilins. Importantly, immunoelectron microscopy and immunofluorescence studies reveal clusters of minor pilins that are anchored to cell surface in the absence of a pilus shaft. Thus, the minor pilins may also be cell wall anchored in addition to their incorporation into pilus structures that could facilitate tight binding to host cells during bacterial infection.  相似文献   

11.
Mycolic acids, the major lipid constituents of Corynebacterineae, play an essential role in maintaining the integrity of the bacterial cell envelope. We have previously characterized a corynebacterial mycoloyltransferase (PS1) homologous in its N-terminal part to the three known mycobacterial mycoloyltransferases, the so-called fibronectin-binding proteins A, B and C. The genomes of Corynebacterium glutamicum (ATCC13032 and CGL2005) and Corynebacterium diphtheriae were explored for the occurrence of other putative corynebacterial mycoloyltransferase-encoding genes (cmyt). In addition to csp1 (renamed cmytA), five new cmyt genes (cmytB-F) were identified in the two strains of C. glutamicum and three cmyt genes in C. diphtheriae. In silico analysis showed that each of the putative cMyts contains the esterase domain, including the three key amino acids necessary for the catalysis. In C. glutamicum CGL2005 cmytE is a pseudogene. The four new cmyt genes were disrupted in this strain and overexpressed in the inactivated strains. Quantitative analyses of the mycolate content of all these mutants demonstrated that each of the new cMyt-defective strains, except cMytC, accumulated trehalose monocorynomycolate and exhibited a lower content of covalently bound corynomycolate than did the parent strain. For each mutant, the mycolate content was fully restored by complementation with the corresponding wild-type gene. Finally, complementation of the cmytA-inactivated mutant by the individual new cmyt genes established the existence of two classes of mycoloyltransferases in corynebacteria.  相似文献   

12.
Different surface organelles contribute to specific interactions of a pathogen with host tissues or infectious partners. Multiple pilus gene clusters potentially encoding different surface structures have been identified in several gram-positive bacterial genomes sequenced to date, including actinomycetales, clostridia, corynebacteria, and streptococci. Corynebacterium diphtheriae has been shown to assemble a pilus structure, with sortase SrtA essential for the assembly of a major subunit SpaA and two minor proteins, SpaB and SpaC. We report here the characterization of a second pilus consisting of SpaD, SpaE, and SpaF, of which SpaD and SpaE form the pilus shaft and SpaF may be located at the pilus tip. The structure of the SpaDEF pilus contains no SpaABC pilins as detected by immunoelectron microscopy. Neither deletion of spaA nor sortase srtA abolishes SpaDEF pilus formation. The assembly of the SpaDEF pilus requires specific sortases located within the SpaDEF pilus gene cluster. Although either sortase SrtB or SrtC is sufficient to polymerize SpaDF, the incorporation of SpaE into the SpaD pili requires sortase SrtB. In addition, an alanine in place of the lysine of the SpaD pilin motif abrogates pilus polymerization. Thus, SpaD, SpaE, and SpaF constitute a different pilus structure that is independently assembled and morphologically distinct from the SpaABC pili and possibly other pili of C. diphtheriae.  相似文献   

13.
Whole cell acid methanolysates from corynebacteria of the D2 group were found to contain meso-diaminopimelic acid, arabinose and galactose. Among lipids of taxonomic value, saturated and unsaturated straight chain fatty acids (14 to 18 carbon atoms), tuberculostearic acid (10-methyl octadecanoic acid) and mycolic acids were present. The last compounds ranged from 26 to 36 carbon atoms, the predominant types being 28.2, 28.1, 30.3, 30.2, 32.3 and 32.2. By reverse phase thin-layer chromatography the major menaquinone was identified as MK-9(H2)-containing nine isoprene units with two additional hydrogens. Moreover, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides were detected among the phospholipids of these bacteria. Thus, on these bases, the D2 group appears to be closely related to the true corynebacteria.  相似文献   

14.
Nitrogen is an essential component of nearly all complex macromolecules in a bacterial cell, such as proteins, nucleic acids and cell wall components. Accordingly, most prokaryotes have developed elaborate control mechanisms to provide an optimal supply of nitrogen for cellular metabolism and to cope with situations of nitrogen limitation. In this review, recent advances in our knowledge of ammonium uptake, its assimilation, and related regulatory systems in Corynebacterium glutamicum, a Gram-positive soil bacterium used for the industrial production of amino acids, are summarized and discussed with respect to the situation in the bacterial model organisms, Escherichia coli and Bacillus subtilis, and in comparison to the situation in other actinomycetes, namely in mycobacteria and streptomycetes. The regulatory network of nitrogen control in C. glutamicum seems to be a patchwork of different elements. It includes proteins similar to the UTase/GlnK pathway of E. coli and expression regulation by a repressor protein as in B. subtilis, but it lacks an NtrB/NtrC two-component signal transduction system. Furthermore, the C. glutamicum regulation network has unique features, such as a new sensing mechanism. Based on its extremely well-investigated central metabolism, well-established molecular biology tools, a public genome sequence and a newly-established proteome project, C. glutamicum seems to be a suitable model organism for other corynebacteria, such as Corynebacterium diphtheriae and Corynebacterium efficiens.  相似文献   

15.
Multiple pilus gene clusters have been identified in several gram-positive bacterial genomes sequenced to date, including the Actinomycetales, clostridia, streptococci, and corynebacteria. The genome of Corynebacterium diphtheriae contains three pilus gene clusters, two of which have been previously characterized. Here, we report the characterization of the third pilus encoded by the spaHIG cluster. By using electron microscopy and biochemical analysis, we demonstrate that SpaH forms the pilus shaft, while SpaI decorates the structure and SpaG is largely located at the pilus tip. The assembly of the SpaHIG pilus requires a specific sortase located within the spaHIG pilus gene cluster. Deletion of genes specific for the synthesis and polymerization of the other two pilus types does not affect the SpaHIG pilus. Moreover, SpaH but not SpaI or SpaG is essential for the formation of the filament. When expressed under the control of an inducible promoter, the amount of the SpaH pilin regulates pilus length; no pili are assembled from an SpaH precursor that has an alanine in place of the conserved lysine of the SpaH pilin motif. Thus, the spaHIG pilus gene cluster encodes a pilus structure that is independently assembled and antigenically distinct from other pili of C. diphtheriae. We incorporate these findings in a model of sortase-mediated pilus assembly that may be applicable to many gram-positive pathogens.  相似文献   

16.
The recent determination of the complete genome sequence of Corynebacterium diphtheriae, the aetiological agent of diphtheria, has allowed a detailed comparison of its physiology with that of its closest sequenced pathogenic relative Mycobacterium tuberculosis. Of major importance to the pathogenicity and resilience of the latter is its particularly complex cell envelope. The corynebacteria share many of the features of this extraordinary structure although to a lesser level of complexity. The cell envelope of M. tuberculosis has provided the molecular targets for several of the major anti-tubercular drugs. Given a backdrop of emerging multi-drug resistant strains of the organism (MDR-TB) and its continuing global threat to human health, the search for novel anti-tubercular agents is of paramount importance. The unique structure of this cell wall and the importance of its integrity to the viability of the organism suggest that the search for novel drug targets within the array of enzymes responsible for its construction may prove fruitful. Although the application of modern bioinformatics techniques to the 'mining' of the M. tuberculosis genome has already increased our knowledge of the biosynthesis and assembly of the mycobacterial cell wall, several issues remain uncertain. Further analysis by comparison with its relatives may bring clarity and aid the early identification of novel cellular targets for new anti-tuberculosis drugs. In order to facilitate this aim, this review intends to illustrate the broad similarities and highlight the structural differences between the two bacterial envelopes and discuss the genetics of their biosynthesis.  相似文献   

17.
Pseudomonas fluorescens is able to grow on R-benzoin as the sole carbon and energy source because it harbours the enzyme benzaldehyde lyase that cleaves the acyloin linkage using thiamine diphosphate (ThDP) as a cofactor. In the reverse reaction, this lyase catalyses the carboligation of two aldehydes with high substrate and stereospecificity. The enzyme structure was determined by X-ray diffraction at 2.6 A resolution. A structure-based comparison with other proteins showed that benzaldehyde lyase belongs to a group of closely related ThDP-dependent enzymes. The ThDP cofactors of these enzymes are fixed at their two ends in separate domains, suspending a comparatively mobile thiazolium ring between them. While the residues binding the two ends of ThDP are well conserved, the lining of the active centre pocket around the thiazolium moiety varies greatly within the group. Accounting for the known reaction chemistry, the natural substrate R-benzoin was modelled unambiguously into the active centre of the reported benzaldehyde lyase. Due to its substrate spectrum and stereospecificity, the enzyme extends the synthetic potential for carboligations appreciably.  相似文献   

18.
During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号