首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ferredoxin-NADP+ reductase (FNR) catalyzes the reduction of NADP+ to NADPH in an overall reversible reaction, showing some differences in the mechanisms between cyanobacterial and higher plant FNRs. During hydride transfer it is proposed that the FNR C-terminal Tyr is displaced by the nicotinamide. Thus, this C-terminal Tyr might be involved not only in modulating the flavin redox properties, as already shown, but also in nicotinamide binding and hydride transfer. FNR variants from the cyanobacterium Anabaena in which the C-terminal Tyr has been replaced by Trp, Phe, or Ser have been produced. All FNR variants show enhanced NADP+ and NAD+ binding, especially Tyr303Ser, which correlates with a noticeable improvement of NADH-dependent reactions. Nevertheless, the Tyr303Ser variant shows a decrease in the steady-state kcat value with NADPH. Fast kinetic analysis of the hydride transfer shows that the low efficiency observed for this mutant FNR under steady-state conditions is not due to a lack of catalytic ability but rather to the strong enzyme-coenzyme interaction. Three-dimensional structures for Tyr303Ser and Tyr303Trp variants and its complexes with NADP+ show significant differences between plant and cyanobacterial FNRs. Our results suggest that modulation of coenzyme affinity is highly influenced by the strength of the C-terminus-FAD interaction and that subtle changes between plant and cyanobacterial structures are able to modify the energy of that interaction. Additionally, it is shown that the C-terminal Tyr of FNR lowers the affinity for NADP+/H to levels compatible with steady-state turnover during the catalytic cycle, but it is not involved in the hydride transfer itself.  相似文献   

2.
Rapid reaction studies presented herein show that ferredoxin:NADP+ oxidoreductase (FNR, EC 1.18.1.2) catalyzes electron transfer from spinach ferredoxin (Fd) to NADP+ via a ternary complex, Fd X FNR X NADP+. In the absence of NADP+, reduction of ferredoxin:NADP+ reductase by Fd was much slower than the catalytic rate: 37-80 s-1 versus at least 445 e-s-1; dissociation of oxidized spinach ferredoxin (Fdox) from one-electron reduced ferredoxin:NADP+ reductase (FNRsq) limited the reduction of FNR. This confirms the steady-state kinetic analysis of Masaki et al. (Masaki, R., Yoshikaya, S., and Matsubara, H. (1982) Biochim. Biophys. Acta 700, 101-109). Occupation of the NADP+ binding site of FNR by NADP+ or by 2',5'-ADP (a nonreducible NADP+ analogue) greatly increased the rate of electron transfer from Fd to FNR, releiving inhibition by Fdox. NADP+ (and 2',5'-ADP) probably facilitate the dissociation of Fdox; equilibrium studies have shown that nucleotide binding decreases the association of Fd with FNR (Batie, C. J. (1983) Ph.D. dissertation, Duke University; Batie, C. J., and Kamin, H. (1982) in Flavins and Flavoproteins VII (Massey, V., and Williams, C. H., Jr., eds) pp. 679-683, Elsevier, New York; Batie, C.J., and Kamin, H. (1982) Fed. Proc. 41, 888; and Batie, C.J., and Kamin, H. (1984) J. Biol. Chem. 259, 8832-8839). Premixing Fd with FNR was found to inhibit the reaction of the flavoprotein with NADP+ and with NADPH; thus, substrate binding may be ordered, NADP+ first, then Fd. FNRred and NADP+ very rapidly formed an FNRred X NADP+ complex with flavin to nicotinamide charge transfer bands. The Fdred X NADP+ complex then relaxed to an equilibrium species; the spectrum indicated a predominance of FNRox X NADPH charge-transfer complex. However, charge-transfer species were not observed during turnover; thus, their participation in catalysis of electron transfer from Fd to NADP+ remains uncertain. The catalytic rate of Fd to NADP+ electron transfer, as well as the rates of electron transfer from Fd to FNR, and from FNR to NADP+ were decreased when the reactants were in D2O; diaphorase activity was unaffected by solvent. On the basis of the data presented, a scheme for the catalytic mechanism of catalysis by FNR is presented.  相似文献   

3.
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP+ binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP+ substrate binds to FNR and how the hydride ion is transferred from FAD to NADP+ remain unclear. The structure of an FNR:NADP+ complex from Anabaena has been determined by X-ray diffraction analysis of the cocrystallised units to 2.1 A resolution. Structural perturbation of FNR induced by complex formation produces a narrower cavity in which the 2'-phospho-AMP and pyrophosphate portions of the NADP+ are perfectly bound. In addition, the nicotinamide mononucleotide moiety is placed in a new pocket created near the FAD cofactor with the ribose being in a tight conformation. The crystal structure of this FNR:NADP+ complex obtained by cocrystallisation displays NADP+ in an unusual conformation and can be considered as an intermediate state in the process of coenzyme recognition and binding. Structural analysis and comparison with previously reported complexes allow us to postulate a mechanism which would permit efficient hydride transfer to occur. Besides, this structure gives new insights into the postulated formation of the ferredoxin:FNR:NADP+ ternary complex by prediction of new intermolecular interactions, which could only exist after FNR:NADP+ complex formation. Finally, structural comparison with the members of the broad FNR structural family also provides an explanation for the high specificity exhibited by FNR for NADP+/H versus NAD+/H.  相似文献   

4.
The catalytic mechanism proposed for ferredoxin-NADP(+) reductase (FNR) is initiated by reduction of its flavin adenine dinucleotide (FAD) cofactor by the obligatory one-electron carriers ferredoxin (Fd) or flavodoxin (Fld) in the presence of oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)). The C-terminal tyrosine of FNR, which stacks onto its flavin ring, modulates the enzyme affinity for NADP(+)/H, being removed from this stacking position during turnover to allow productive docking of the nicotinamide and hydride transfer. Due to its location at the substrate-binding site, this residue might also affect electron transfer between FNR and its protein partners. We therefore studied the interactions and electron-transfer properties of FNR proteins mutated at their C-termini. The results obtained with the homologous reductases from pea and Anabaena PCC7119 indicate that interactions with Fd or Fld are hardly affected by replacement of this tyrosine by tryptophan, phenylalanine, or serine. In contrast, electron exchange is impaired in all mutants, especially in the nonconservative substitutions, without major differences between the eukaryotic and the bacterial FNR. Introduction of a serine residue shifts the flavin reduction potential to less negative values, whereas semiquinone stabilization is severely hampered, introducing further constraints to the one-electron-transfer processes. Thus, the C-terminal tyrosine of FNR plays distinct and complementary roles during the catalytic cycle, (i) by lowering the affinity for NADP(+)/H to levels compatible with steady-state turnover, (ii) by contributing to the flavin semiquinone stabilization required for electron splitting, and (iii) by modulating the rates of electron exchange with the protein partners.  相似文献   

5.
6.
《BBA》2014,1837(2):251-263
Ferredoxin-nicotinamide–adenine dinucleotide phosphate (NADP+) reductase (FNR) catalyses the production of reduced nicotinamide–adenine dinucleotide phosphate (NADPH) in photosynthetic organisms, where its flavin adenine dinucleotide (FAD) cofactor takes two electrons from two reduced ferredoxin (Fd) molecules in two sequential steps, and transfers them to NADP+ in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machinery, additional roles can still be envisaged for already reported key residues, and new features are added to residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively involved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic properties of the isoalloxazine ring, and in consequence the electron transfer (ET) and HT processes. Additionally, we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposition of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT event.  相似文献   

7.
Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data.  相似文献   

8.
FprA is a mycobacterial oxidoreductase that catalyzes the transfer of reducing equivalents from NADPH to a protein acceptor. We determined the atomic resolution structure of FprA in the oxidized (1.05 A resolution) and NADPH-reduced (1.25 A resolution) forms. The comparison of these FprA structures with that of bovine adrenodoxin reductase showed no significant overall differences. Hence, these enzymes, which belong to the structural family of the disulfide oxidoreductases, are structurally conserved in very distant organisms such as mycobacteria and mammals. Despite the conservation of the overall fold, the details of the active site of FprA show some peculiar features. In the oxidized enzyme complex, the bound NADP+ exhibits a covalent modification, which has been identified as an oxygen atom linked through a carbonylic bond to the reactive C4 atom of the nicotinamide ring. Mass spectrometry has confirmed this assignment. This NADP+ derivative is likely to form by oxidation of the NADP+ adduct resulting from nucleophilic attack by an active-site water molecule. A Glu-His pair is well positioned to activate the attacking water through a mechanism analogous to that of the catalytic triad in serine proteases. The NADP+ nicotinamide ring exhibits the unusual cis conformation, which may favor derivative formation. The physiological significance of this reaction is presently unknown. However, it could assist with drug-design studies in that the modified NADP+ could serve as a lead compound for the development of specific inhibitors.  相似文献   

9.
Ferredoxin-NADP(+) reductase (FNR) catalyzes the reduction of NADP(+) through the formation of an electron transfer complex with ferredoxin. To gain insight into the interaction of this enzyme with substrates at both ends of the polypeptide chain, we performed NMR analyses of a 314-residue maize leaf FNR with a nearly complete assignment of the backbone resonances. The chemical shift perturbation upon formation of the complex indicated that a flexible N-terminal region of FNR contributed to the interaction with maize ferredoxin, and an analysis of N-terminally truncated mutants of FNR confirmed the importance of this region for the binding of ferredoxin. Comparison between the spectra of FNR in the NADP(+)- and inhibitor-bound states also revealed that the nicotinamide moiety of NADP(+) was accessible to the C-terminal Tyr314. We propose that the formation of the catalytic competent complex of FNR and substrates is achieved through the interaction of the N- and C-terminal segments with ferredoxin and NADP(+), respectively. Since the ends of the polypeptide chain act as flexible regions of proteins, they may contribute to the search of a larger space for a binding partner and to the opening of active sites.  相似文献   

10.
The NAD(P)H:flavin oxidoreductase from Escherichia coli, named Fre, is a monomer of 26.2 kDa that catalyzes the reduction of free flavins using NADPH or NADH as electron donor. The enzyme does not contain any prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin in a ternary complex prior to oxidoreduction. The specificity of the flavin reductase for the pyridine nucleotide was studied by steady-state kinetics using a variety of NADP analogs. Both the nicotinamide ring and the adenosine part of the substrate molecule have been found to be important for binding to the polypeptide chain. However, in the case of NADPH, the 2'-phosphate group destabilized almost completely the interaction with the adenosine moiety. Moreover, NADPH and NMNH are very good substrates for the flavin reductase, and we have shown that both these molecules bind to the enzyme almost exclusively by the nicotinamide ring. This provides evidence that the flavin reductase exhibits a unique mode for recognition of the reduced pyridine nucleotide. In addition, we have shown that the flavin reductase selectively transfers the pro-R hydrogen from the C-4 position of the nicotinamide ring and is therefore classified as an A-side-specific enzyme.  相似文献   

11.
Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low-potential one-electron donors (ferredoxin, flavodoxin, and adrenodoxin) to redox-based metabolisms in plastids, mitochondria, and bacteria. The FNRs from plants and most eubacteria constitute a unique family, the plant-type ferredoxin-NADP(H) reductases. Plastidic FNRs are quite efficient at sustaining the demands of the photosynthetic process. At variance, FNRs from organisms with heterotrophic metabolisms or anoxygenic photosynthesis display turnover numbers that are 20-100-fold lower than those of their plastidic and cyanobacterial counterparts. To gain insight into the FNR structural features that modulate enzyme catalytic efficiency, we constructed a recombinant FNR in which the carboxyl-terminal amino acid (Tyr308) is followed by an artificial metal binding site of nine amino acids, including four histidine residues. This added structure binds Zn2+ or Co2+ and, as a consequence, significantly reduces the catalytic efficiency of the enzyme by decreasing its kcat. The Km for NADPH and the Kd for NADP+ were increased 2 and 3 times, respectively, by the addition of the amino acid extension in the absence of Zn2+. Nevertheless, the structuring of the metal binding site did not change the Km for NADPH or the Kd for NADP+ of the FNR-tail enzyme. Our results provide experimental evidence which indicates that mobility of the carboxyl-terminal backbone region of the FNR, mainly Tyr308, is essential for obtaining an FNR enzyme with high catalytic efficiency.  相似文献   

12.
Interaction of ferredoxin-NADP+ reductase from Anabaena with its substrates   总被引:1,自引:0,他引:1  
The interaction of ferredoxin-NADP+ reductase from the cyanobacterium Anabaena variabilis with its substrates, NADP+ and ferredoxin, has been studied by difference absorption spectroscopy. Several structural analogs of NADP+ have been shown to form complexes the stabilities of which are strongly dependent on the ionic strength of the medium. In most cases the binding energy of these complexes and their difference absorption spectra are similar to those reported for the spinach enzyme. However, NADP+ perturbs the absorption spectra of the Anabaena and spinach enzymes in a different way. This difference has been shown to be related to the binding of the nicotinamide ring of NADP+ to the enzymes. These results are interpreted as being due to a different nicotinamide binding site in the two reductases. The enthalpic and entropic components of the Gibbs energy of formation of the NADP+ complex have been estimated. An increase in entropy on NADP+ binding seems to be the main source of stability for the complex. A shift of approximately 40 mV in the redox potential of the couple NADP+/NADPH has been observed to occur upon binding of NADP+ to the oxidized enzyme. This allows us to calculate the binding energy between the reductase and NADPH. The ability of the reductase, ferredoxin, and NADP+ to form a ternary complex indicates that the protein carrier binds to the reductase through a different site than that of the pyridine nucleotide.  相似文献   

13.
Phe(1395) stacks parallel to the FAD isoalloxazine ring in neuronal nitric-oxide synthase (nNOS) and is representative of conserved aromatic amino acids found in structurally related flavoproteins. This laboratory previously showed that Phe(1395) was required to obtain the electron transfer properties and calmodulin (CaM) response normally observed in wild-type nNOS. Here we characterized the F1395S mutant of the nNOS flavoprotein domain (nNOSr) regarding its physical properties, NADP(+) binding characteristics, flavin reduction kinetics, steady-state and pre-steady-state cytochrome c reduction kinetics, and ability to shield its FMN cofactor in response to CaM or NADP(H) binding. F1395S nNOSr bound NADP(+) with 65% more of the nicotinamide ring in a productive conformation with FAD for hydride transfer and had an 8-fold slower rate of NADP(+) dissociation. CaM stimulated the rates of NADPH-dependent flavin reduction in wild-type nNOSr but not in the F1395S mutant, which had flavin reduction kinetics similar to those of CaM-free wild-type nNOSr. CaM-free F1395S nNOSr lacked repression of cytochrome c reductase activity that is typically observed in nNOSr. The combined results from pre-steady-state and EPR experiments revealed that this was associated with a lesser degree of FMN shielding in the NADP(+)-bound state as compared with wild type. We conclude that Phe(1395) regulates nNOSr catalysis in two ways. It facilitates NADP(+) release to prevent this step from being rate-limiting, and it enables NADP(H) to properly regulate a conformational equilibrium involving the FMN subdomain that controls reactivity of the FMN cofactor in electron transfer.  相似文献   

14.
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.  相似文献   

15.
The role of the highly conserved C266 and L268 of pea ferredoxin-NADP(+) reductase (FNR) in formation of the catalytically competent complex of the enzyme with NADP(H) was investigated. Previous studies suggest that the volume of these side-chains, situated facing the side of the C-terminal Y308 catalytic residue not stacking the flavin isoalloxazine ring, may be directly involved in the fine-tuning of the catalytic efficiency of the enzyme. Wild-type pea FNR as well as single and double mutants of C266 and L268 residues were analysed by fast transient-kinetic techniques and their midpoint reduction potentials were determined. For the C266A, C266M and C266A/L268A mutants a significant reduction in the overall hydride transfer (HT) rates was observed along with the absence of charge-transfer complex formation. The HT rate constants for NADPH oxidation were lower than those for NADP(+) reduction, reaching a 30-fold decrease in the double mutant. In agreement, these variants exhibited more negative midpoint potentials with respect to the wild-type enzyme. The three-dimensional structures of C266M and L268V variants were solved. The C266M mutant shows a displacement of E306 away from the relevant residue S90 to accommodate the bulky methionine introduced. The overall findings indicate that in FNR the volume of the residue at position 266 is essential to attain the catalytic architecture between the nicotinamide and isoalloxazine rings at the active site and, therefore, for an efficient HT process. In addition, flexibility of the 268-270 loop appears to be critical for FNR to achieve catalytically competent complexes with NADP(H).  相似文献   

16.
Maize ferredoxin-NADP(+) reductase (FNR) consists of flavin adenine dinucleotide (FAD) and NADP(+) binding domains with a FAD molecule bound noncovalently in the cleft between these domains. The structural changes of FNR induced by dissociation of FAD have been characterized by a combination of optical and biochemical methods. The CD spectrum of the FAD-depleted FNR (apo-FNR) suggested that removal of FAD from holo-FNR produced an intermediate conformational state with partially disrupted secondary and tertiary structures. Small angle x-ray scattering indicated that apo-FNR assumes a conformation that is less globular in comparison with holo-FNR but is not completely chain-like. Interestingly, the replacement of tyrosine 95 responsible for FAD binding with alanine resulted in a molecular form similar to apo-protein of the wild-type enzyme. Both apo- and Y95A-FNR species bound to Cibacron Blue affinity resin, indicating the presence of a native-like conformation for the NADP(+) binding domain. On the other hand, no evidence was found for the existence of folded conformations in the FAD binding domains of these proteins. These results suggested that FAD-depleted FNR assumes a partially folded structure with a residual NADP(+) binding domain but a disordered FAD binding domain.  相似文献   

17.
Anaerobic reduction of the flavoprotein adrenodoxin reductase with NADPH yields a spectrum with long wavelength absorbance, 750 nm and higher. No EPR signal is observed. This spectrum is produced by titration of oxidized adrenodoxin reductase with NADPH, or of dithionite-reduced adrenodoxin reductase with NADP+. Both titrations yield a sharp endpoint at 1 NADP(H) added per flavin. Reduction with other reductants, including dithionite, excess NADH, and catalytic NADP+ with an NADPH generating system, yields a typical fully reduced flavin spectrum, without long wavelength absorbance. The species formed on NADPH reduction appears to be a two-electron-containing complex, with a low dissociation constant, between reduced adrenodoxin reductase and NADP+, designated ARH2-NADP+. Titration of dithionite-reduced adrenodoxin reductase with NADPH also produces a distinctive spectrum, with a sharp endpoint at 1 NADPH added per reduced flavin, indicating formation of a four-electron-containing complex between reduced adrenodoxin reductase and NADPH. Titration of adrenodoxin reductase with NADH, instead of NADPH, provides a curved titration plot rather than the sharp break seen with NADPH, and permits calculation of a potential for the AR/ARH2 couple of -0.291 V, close to that of NAD(P)H (-0.316 V). Oxidized adrenodoxin reductase binds NADP+ much more weakly (Kdiss=1.4 X 10(-5) M) than does reduced adrenodoxin reductase, with a single binding site. The preferential binding of NADP+ to reduced enzyme permits prediction of a more positive oxidation-reduction potential of the flavoprotein in the presence of NADP+; a change of about + 0.1 V has been demonstrated by titration with safranine T. From this alteration in potential, a Kdiss of 1.0 X 10(-8) M for binding of NADP+ to reduced adrenodoxin reductase is calculated. It is concluded that the strong binding of NADP+ to reduced adrenodoxin reductase provides the thermodynamic driving force for formation of a fully reduced flavoprotein form under conditions wherein incomplete reduction would otherwise be expected. Stopped flow studies demonstrate that reduction of adrenodoxin reductase by equimolar NADPH to form the ARH2-NADP+ complex is first order (k=28 s-1). When a large excess of NADPH is used, a second apparently first order process is observed (k=4.25 s-1), which is interpreted as replacement of NADPH for NADP+ in the ARH2-NADP+ complex. Comparison of these rate constants to catalytic flavin turnover numbers for reduction of various oxidants by NADPH, suggests an ordered sequential mechanism in which reduction of oxidant is accomplished by the ARH2-NADP+ complex, followed by dissociation of NADP+. The absolute dependence of NADPH-cytochrome c reduction on both adrenodoxin reductase and adrenodoxin is confirmed...  相似文献   

18.
Konas DW  Takaya N  Sharma M  Stuehr DJ 《Biochemistry》2006,45(41):12596-12609
Nitric oxide synthases (NOS) are flavoheme enzymes with important roles in biology. The reductase domain of neuronal NOS (nNOSr) contains a widely conserved acidic residue (Asp(1393)) that is thought to facilitate hydride transfer between NADPH and FAD. Previously we found that the D1393V and D1393N mutations lowered the NO synthesis activity and the rates of heme and flavin reduction in full-length nNOS. To examine the mechanisms for these results in greater detail, we incorporated D1393V and D1393N substitutions into nNOSr along with a truncated NADPH-FAD domain construct (FNR) and characterized the mutants. D1393V nNOSr had markedly lower (相似文献   

19.
Ferredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced. The mutated enzyme presents similar k(cat) values for NADPH and NADH, around 2.5 times slower than that reported for WT FNR with NADPH. Its K(m) value for NADH decreased 20-fold with regard to WT FNR, whereas the K(m) for NADPH remains similar. The combined effect is a much higher catalytic efficiency for NAD(+)/H, with a minor decrease of that for NADP(+)/H. In the mutated enzyme, the specificity for NADPH versus NADH has been decreased from 67,500 times to only 12 times, being unable to discriminate between both coenzymes. Additionally, giving the role stated for the C-terminal Tyr in FNR, its role in the energetics of the FAD binding has been analysed.  相似文献   

20.
The chemical shifts of all the aromatic proton and anomeric proton resonances of NADP+, NADPH, and several structural analogues have been determined in their complexes with Lactobacillus casei dihydrofolate reductase by double-resonance (saturation transfer) experiments. The binding of NADP+ to the enzyme leads to large (0.9-1.6 ppm) downfield shifts of all the nicotinamide proton resonances and somewhat smaller upfield shifts of the adenine proton resonance. The latter signals show very similar chemical shifts in the binary and ternary complexes of NADP+ and the binary complexes of several other coenzymes, suggesting that the environment of the adenine ring is similar in all cases. In contrast, the nicotinamide proton resonances show much greater variability in position from one complex to another. The data show that the environments of the nicotinamide rings of NADP+, NADPH, and the thionicotinamide and acetylpyridine analogues of NADP+ in their binary complexes with the enzyme are quite markedly different from one another. Addition of folate or methotrexate to the binary complex has only modest effects on the nicotinamide ring of NADP+, but trimethoprim produces a substantial change in its environment. The dissociation rate constant of NADP+ from a number of complexes was also determined by saturation transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号