首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Barbato  M Ikura  L E Kay  R W Pastor  A Bax 《Biochemistry》1992,31(23):5269-5278
The backbone dynamics of Ca(2+)-saturated recombinant Drosophila calmodulin has been studied by 15N longitudinal and transverse relaxation experiments, combined with 15N(1H) NOE measurements. Results indicate a high degree of mobility near the middle of the central helix of calmodulin, from residue K77 through S81, with order parameters (S2) in the 0.5-0.6 range. The anisotropy observed in the motion of the two globular calmodulin domains is much smaller than expected on the basis of hydrodynamic calculations for a rigid dumbbell type structure. This indicates that, for the purposes of 15N relaxation, the tumbling of the N-terminal (L4-K77) and C-terminal (E82-S147) lobes of calmodulin is effectively independent. A slightly shorter motional correlation time (tau c approximately 6.3 ns) is obtained for the C-terminal domain compared to the N-terminal domain (tau c approximately 7.1 ns), in agreement with the smaller size of the C-terminal domain. A high degree of mobility, with order parameters of approximately 0.5, is also observed in the loop that connects the first with the second EF-hand type calcium binding domain and in the loop connecting the third and fourth calcium binding domain.  相似文献   

2.
3.
The backbone dynamics of the channel-forming peptide antibiotic zervamicin IIB (Zrv-IIB) in methanol were studied by 15N nuclear magnetic resonance relaxation measurements at 11.7, 14.1 and 18.8 T magnetic fields. The anisotropic overall rotation of the peptide was characterized based on 15N relaxation data and by hydrodynamic calculations. 'Model-free' analysis of the relaxation data showed that the peptide is fairly rigid on a sub-nanosecond time-scale. The residues from the polar side of Zrv-IIB helix are involved in micro-millisecond time-scale conformational exchange. The conformational exchange observed might indicate intramolecular processes or specific intermolecular interactions of potential relevance to Zrv-IIB ion channel formation.  相似文献   

4.
We present a detailed conformational study of 15N-labelled actinomycin D in different organic solvents using 1H, 15N and two-dimensional (2D) NMR techniques at 30.4 MHz and 50.6 MHz. The assignment of the threonine and valine 15N resonances to the individual residues on the alpha- or beta-lactone rings was achieved via heteronuclear shift-correlated 2D NMR experiments. The solvent perturbation studies allow an estimation of the solvent accessibility of the nitrogens and carbonyl groups. Evidence is presented that the pentapeptide rings of actinomycin D have different conformations in polar and in apolar solvents. The chromophoric N10 is efficiently solvent-protected, the solvent-dependence of its 15N resonance resulting from solvent interactions at other positions of the molecule and from solvent-dependent changes in the twisting of the chromophoric system. The chromophoric 2-amino nitrogen is shown to exhibit a strong sp2 character due to the formation of a conjugated system with the carbonyl group at C1. Such a conjugation requires a non-planar chromophoric ring system. Additionally, a hydrogen bond connecting the 2-amino and the 1-carbonyl group was detected. In some solvents, two resonances appear for the 2-amino nitrogen implying the presence of the 2-amino group in two different conformations. The possible implications of the non-planarity of the chromophore for the intercalation process and for the biological activity of the drug are discussed.  相似文献   

5.
L E Kay  D A Torchia  A Bax 《Biochemistry》1989,28(23):8972-8979
This paper describes the use of novel two-dimensional nuclear magnetic resonance (NMR) pulse sequences to provide insight into protein dynamics. The sequences developed permit the measurement of the relaxation properties of individual nuclei in macromolecules, thereby providing a powerful experimental approach to the study of local protein mobility. For isotopically labeled macromolecules, the sequences enable measurements of heteronuclear nuclear Overhauser effects (NOE) and spin-lattice (T1) and spin-spin (T2) 15N or 13C relaxation times with a sensitivity similar to those of many homonuclear 1H experiments. Because T1 values and heteronuclear NOEs are sensitive to high-frequency motions (10(8)-10(12) s-1) while T2 values are also a function of much slower processes, it is possible to explore dynamic events occurring over a large time scale. We have applied these techniques to investigate the backbone dynamics of the protein staphylococcal nuclease (S. Nase) complexed with thymidine 3',5'-bisphosphate (pdTp) and Ca2+ and labeled uniformly with 15N. T1, T2, and NOE values were obtained for over 100 assigned backbone amide nitrogens in the protein. Values of the order parameter (S), characterizing the extent of rapid 1H-15N bond motions, have been determined. These results suggest that there is no correlation between these rapid small amplitude motions and secondary structure for S. Nase. In contrast, 15N line widths suggest a possible correlation between secondary structure and motions on the millisecond time scale. In particular, the loop region between residues 42 and 56 appears to be considerably more flexible on this slow time scale than the rest of the protein.  相似文献   

6.
7.
Here we present the 100% complete assignment chemical shift of non-labile 1H, 15N and 13C nuclei of Calbindin D9k P43G. The assignment includes all non-exchangeable side chain nuclei, including ones that are rarely reported, such as LysNζ as well as the termini. NMR experiments required to achieve truly complete assignments are discussed. To the best of our knowledge our assignments for Calbindin D9k extend beyond previous studies reaching near-completeness (Vis et al. in Biochem 33:14858–14870, 1994; Yamazaki et al. in J Am Chem Soc 116:6464–6465, 1994; Yamazaki et al. in Biochem 32:5656–5669, 1993b).  相似文献   

8.
The cytotoxic ribonuclease -sarcin is a 150-residue protein that inactivates ribosomes by selectively cleaving a single phosphodiester bond in a strictly conserved rRNA loop. In order to gain insights on the molecular basis of its highly specific activity, we have previously determined its solution structure and studied its electrostatics properties. Here, we complement those studies by analysing the backbone dynamics of -sarcin through measurement of longitudinal relaxation rates R1, off resonance rotating frame relaxation rates R1, and the 15N1HNOE of the backbone amide 15N nuclei at two different magnetic field strengths (11.7 and 17.6 T). The two sets of relaxation parameters have been analysed in terms of the reduced spectral density mapping formalism, as well as by the model-free approach. -Sarcin behaves as an axial symmetric rotor of the prolate type (D/D=1.16 ± 0.02) which tumbles with a correlation time m of 7.54 ± 0.02 ns. The rotational diffusion properties have been also independently evaluated by hydrodynamic calculations and are in good agreement with the experimental results. The analysis of the internal dynamics reveals that -sarcin is composed of a rigid hydrophobic core and some exposed segments which undergo fast (ps to ns) internal motions. Slower motions in the s to ms time scale are less abundant and in some cases can be assigned to specific motional processes. All dynamic data are discussed in relation to the role of some particular residues of -sarcin in the process of recognition of its ribosomal target.  相似文献   

9.
Calbindin D(9k) is a dicalcium binding protein consisting of two helix-loop-helix EF-hand motifs joined together by a flexible linker region where one metal ion can bind to each of the two loops. A proline residue at position 43 in the linker region displays cis-trans isomerism in the wild-type (WT) protein. Such isomerism appeared to be removed by substituting the proline with a glycine or a methionine in the P43G or P43M mutant. We have extended the available mobility studies on the P43M mutant through amide (15)N R(1), R(2), and R(1)(rho)() measurements. This has revealed unexpected conformational equilibria on the millisecond time scale involving residues 38, 42-44, and 46 in the linker region and residues 18 and 19 in calcium binding site I with similar energy barriers. These data are discussed in comparison with those available for the WT, as well as the apo-, mono-, and disubstituted P43G mutant. Quantification of water-amide proton exchange rates using saturation transfer and qualitative application of (15)N-(CLEANEX-PM)-FHSQC shows the values are in agreement with high mobility for the above-mentioned residues. Cross correlation between N-H dipole-dipole relaxation and (15)N CSA relaxation indicates that some of these mobility differences may extend to the sub-nanosecond time scale. Similar data were also obtained for the derivative where the calcium ion in the C-terminal loop was replaced with lanthanum. The results presented here show that, contrary to expectations, there are significant differences in dynamics between the dicalcium state of P43G and P43M and that these differences are not confined to the flexible linker region containing the point mutation. They also demonstrate that substitution of a lanthanide ion for calcium, which is a common procedure, does not significantly alter the mobility of the native protein.  相似文献   

10.
Calbindin D9k is a small EF-hand protein that binds two calcium ions with positive cooperativity. The molecular basis of cooperativity for the binding pathway where the first ion binds in the N-terminal site (1) is investigated by NMR experiments on the half-saturated state of the N56A mutant, which exhibits sequential yet cooperative binding (Linse S, Chazin WJ, 1995, Protein Sci 4:1038-1044). Analysis of calcium-induced changes in chemical shifts, amide proton exchange rates, and NOEs indicates that ion binding to the N-terminal binding loop causes significant changes in conformation and/or dynamics throughout the protein. In particular, all three parameters indicate that the hydrophobic core undergoes a change in packing to a conformation very similar to the calcium-loaded state. These results are similar to those observed for the (Cd2+)1 state of the wild-type protein, a model for the complementary half-saturated state with an ion bound in the C-terminal site (II). Thus, with respect to cooperativity in either of the binding pathways, binding of the first ion drives the conformation and dynamics of the protein far toward the (Ca2+)2 state, thereby facilitating binding of the second ion. Comparison with the half-saturated state of the analogous E65Q mutant confirms that mutation of this critical bidentate calcium ligand at position 12 of the consensus EF-hand binding loop causes very significant structural perturbations. This result has important implications regarding numerous studies that have utilized mutation of this critical residue for site deactivation.  相似文献   

11.
The cellular functions of several S100 proteins involve specific interactions with phospholipids and the cell membrane. The interactions between calbindin D(9k) (S100D) and the detergent dodecyl phosphocholine (DPC) were studied using NMR spectroscopy. In the absence of Ca(2+), the protein associates with DPC micelles. The micelle-associated state has intact helical secondary structures but no apparent tertiary fold. At neutral pH, Ca(2+)-loaded calbindin D(9k) does not associate with DPC micelles. However, a specific interaction is observed with individual DPC molecules at a site close to the linker between the two EF-hands. Binding to this site occurs only when Ca(2+) is bound to the protein. A reduction in pH in the absence of Ca(2+) increases the stability of the micelle-associated state. This along with the corresponding reduction in Ca(2+) affinity causes a transition to the micelle-associated state also in the presence of Ca(2+) when the pH is lowered. Site-specific analysis of the data indicates that calbindin D(9k) has a core of three tightly packed helices (A, B, and D), with a dynamic fourth helix (C) more loosely associated. Evidence is presented that the Ca(2+)-binding characteristics of the two EF-hands are distinctly different in a micelle environment. The role of calbindin D(9k) in the cell is discussed, along with the broader implications for the function of the S100 protein family.  相似文献   

12.
Solid-state nuclear magnetic resonance spectroscopy was used to study the motion of 2H and 19F probes attached to the skeletal muscle actin residues Cys-10, Lys-61 and Cys-374. The probe resonances were observed in dried and hydrated G-actin, F-actin and F-actin-myosin subfragment-1 complexes. Restricted motion was exhibited by 19F probes attached to Cys-10 and Cys-374 on actin. The dynamics of probes attached to dry cysteine powder or F-actin were very similar and the binding of myosin had little effect indicating that the local probe environment imposes the major influence on motion in the solid state. Correlation times determined for the solid state probes indicated that they were undergoing some rapid internal motion in both G-actin and F-actin such as domain twisting. The probe size influenced the motion in G-actin and appeared to sense monomer rotation but not in F-actin where segmental mobility and intramonomer co-ordination appeared to dominate.  相似文献   

13.
In a structure of recombinant bovine calbindin D9k, determined crystallographically to 1.6 A resolution, a proline in mixed, approximately equally populated, cis and trans conformation is observed. Isomers of this kind have not been reported in structure determinations of calbindin D9k to 2.3 A resolution or in any other crystallographically determined protein structure. The cis-trans isomerization occurs at the peptide bond between Gly42 and Pro43, which is in agreement with results from two-dimensional 1H nuclear magnetic resonance spectroscopy experiments on solutions of calbindin D9k. Alternative backbone stretches have been modeled and refined by stereochemical restrained least-squares refinement for the segment Lys41 to Pro43. The final R-value was 0.188. The structural perturbations accompanying the cis-trans isomerization are found to be very localized. The largest positional differences are observed at residue Gly42, in which the alternative positions of the oxygen atom are 3.6 A apart.  相似文献   

14.
15N has been uniformly incorporated into the EF-hand Ca(2+)-binding protein calbindin D9k so that heteronuclear experiments can be used to further characterize the structure and dynamics of the apo, (Cd2+)1 and (Ca2+)2 states of the protein. The 15N NMR resonances were assigned by 2D 15N-resolved 1H experiments, which also allowed the identification of a number of sequential and medium-range 1H-1H contacts that are obscured by chemical shift degeneracy in homonuclear experiments. The 15N chemical shifts are analyzed with respect to correlations with protein secondary structure. In addition, the changes in 15N chemical shift found for the apo----(Cd2+)1----(Ca2+)2 binding sequence confirm that the effects on the protein are mainly associated with chelation of the first ion.  相似文献   

15.
16.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

17.
The effects of Ca(2+) binding on the side-chain methyl dynamics of calbindin D(9k) have been characterized by (2)H NMR relaxation rate measurements. Longitudinal, transverse in-phase, quadrupolar order, transverse anti-phase and double quantum relaxation rates are reported for both the apo and Ca(2+)-loaded states of the protein at two magnetic field strengths. The relatively large size of the data set allows for a detailed analysis of the underlying conformational dynamics by spectral density mapping and model-free fitting procedures. The results reveal a correlation between a methyl group's distance from the Ca(2+) binding sites and its conformational dynamics. Several methyl groups segregate into two limiting classes, one proximal and the other distal to the binding sites. Methyl groups in these two classes respond differently to Ca(2+) binding, both in terms of the timescale and amplitude of their fluctuations. Ca(2+) binding elicits a partial immobilization among methyl groups in the proximal class, which is consistent with previous studies of calbindin's backbone dynamics. The distal class, however, exhibits a trend that could not be inferred from the backbone data in that its mobility actually increases with Ca(2+) binding. We have introduced the term polar dynamics to describe this type of organization across the molecule. The trend may represent an important mechanism by which calbindin D(9k) achieves high affinity binding while minimizing the corresponding loss of conformational entropy.  相似文献   

18.
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.  相似文献   

19.
Adenylate kinase from Escherichia coli (AKeco), consisting of a single 23.6 kDa polypeptide chain folded into domains CORE, AMPbd, and LID, catalyzes the reaction AMP + ATP --> 2ADP. Domains LID and AMPbd execute large-scale movements during catalysis. Backbone dynamics of ligand-free and AP(5)A-inhibitor-bound AKeco were studied comparatively with (15)N NMR relaxation methods. Overall diffusion with correlation times of 15.05 (11.42) ns and anisotropy D(parallel)/D(perp) = 1.25 (1.10), and fast internal motions with correlation times up to 100 ps (50 ps), were determined for AKeco (AKecoAP(5)A). Fast internal motions affect 93% of the AKeco sites, with pronounced preference for domains AMPbd and LID, and 47% of the AKecoAP(5)A sites, with limited variability along the chain. The mean squared generalized order parameters, , of secondary structure elements and loops are affected by ligand binding differentially and in a domain-specific manner. Nanosecond motions predominate within AMPbd. Prominent exchange contributions, associated in particular with residue G10 of the nucleotide-binding P-loop motif, are interpreted to reflect hydrogen-bond dynamics at the inhibitor-binding site. The hypothesis of energetic counter balancing of substrate binding based on crystallographic data is strongly supported by the solution NMR results. Correlations between backbone dynamics and domain displacement are established.  相似文献   

20.
The calcium-binding sites of calbindin D(9k) have a helix-loop-helix motif. In this study, the helix motifs were replaced by several Ala-Gly repeating regions designed on the basis of the primary sequences of several silk fibroins. The synthesized peptides were treated with several organic solvents to modify the secondary structure of the Ala-Gly repeating regions. The local structures of the Ala-Gly repeating regions, as well as the calcium-binding motif, D(9k)-loop (D(9k)L), were determined by (13)C CP/MAS NMR spectroscopy. In the four peptides containing D(9k)L synthesized, the poly(Ala) domains retain the ability to undergo a conformational transition from alpha-helical to beta-sheet in (A)(12)-D(9k)L despite the presence of the D(9k)L domain at the center of the peptide molecule, but the presence of this domain in the other model peptides synthesized has a marked effect on the conformation of the added silk-like domains. The results showed that the structures of the Ala-Gly repeating regions can be controlled by the choice of both the organic solvent and the amino acid sequence of the Ala-Gly repeating regions without disrupting the secondary structure of D(9k)L suggesting that it may retain its ability to bind calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号