首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of steroid hormones, prolactin and protein were determined in trans-cervical flushings of uteri of 73 consenting women presenting for reversal of sterilization. Median total levels of steroids (pmol), prolactin (mu i.u.) and protein (mg) in the washings were: pregnenolone, 4.22; pregnenolone sulphate, 15.1; progesterone, 1.01; dehydroepiandrosterone (DHEA), 8.92; DHEA sulphate, 368; androstenedione, 2.23; testosterone, 1.04; oestrone, less than 0.7; oestrone sulphate, 0.49; oestradiol, 0.08; prolactin, 23.8; and protein, 5.75. Levels of these components of uterine flushings did not vary significantly between Days 6-10, 11-14, 15-20 and 21-28 after the onset of the previous menstrual period (P greater than 0.05). Uniform levels of free steroids in uterine washings throughout the menstrual cycle, and low free steroid/total protein ratios (all less than 3 pmol/mg), support other evidence for a paucity of steroid-binding proteins in human histotroph. The predominance of DHEA sulphate and of pregnenolone sulphate in human uterine washings is in accord with their abundance in plasma, and may provide an important precursor pool for de-novo steroidogenesis by human embryos before implantation. Our results support the view that human histotroph is a filtrate of plasma.  相似文献   

2.
Pregnenolone and dehydroepiandrosterone (DHEA) are sex hormone precursors and neuroprotective steroids. Effects of pregnenolone and DHEA may be in part mediated by their conversion to testosterone and by the consecutive conversion of testosterone to estradiol by the enzyme aromatase. This enzyme is induced in reactive astrocytes after different forms of neurodegenerative lesions and the resultant local production of estradiol in the brain has been shown to be neuroprotective. The participation of aromatase in the neuroprotective effect of pregnenolone and DHEA has been assessed in this study. The protective effect of different doses (12.5, 25, 50, and 100 mg/kg) of pregnenolone or DHEA, against systemic kainic acid (7 mg/kg b.w.), was assessed on hippocampal hilar neurons in gonadectomized Wistar male rats. To determine whether the neuroprotective effect of pregnenolone and DHEA was dependent on their conversion to estradiol, the aromatase inhibitor fadrozole (4.16 mg/ml) was administered using subcutaneous osmotic minipumps. The number of Nissl-stained neurons in the hilus of the dentate gyrus of the hippocampal formation was estimated by the optical disector method. The administration of kainic acid resulted in a significant decrease in the number of hilar neurons compared to rats injected with vehicles. Pregnenolone and DHEA showed a dose-dependent protective effect of hilar neurons against kainic acid. The administration of the aromatase inhibitor fadrozole blocked the neuroprotective effect of pregnenolone and DHEA. These findings suggest that estradiol formation by aromatase mediates neuroprotective effects of pregnenolone and DHEA against excitotoxic-induced neuronal death in the hippocampus.  相似文献   

3.
The rate of aromatization of 4-androstenedione (AD) and 7-hydroxylation of dehydroepiandrosterone (DHEA) by different neuronal cell lines from fetal rat and mouse brain was compared to that of embryonic rat hippocampal cells in primary culture. The (3)H-labeled steroids were incubated with the cells and the metabolites extracted and separated by thin layer chromatography (TLC), as well as analyzed by high-performance liquid chromatography (HPLC) for further identification. All cell types produced estrone (E(1)) and estradiol (E(2)) from [(3)H]AD but the rate of aromatization was lowest with the rat hippocampal cells in primary culture. With [(3)H]DHEA, BHc.2 mouse hippocampal cells and E(t)C.1 neurons behaved like the mixed cells from rat hippocampus, forming 7-hydroxy DHEA as the almost exclusive product. In contrast, mouse brain BV2 microglia were virtually unable to hydroxylate DHEA at C-7 and yielded estrogen and more testosterone (T) than other cell types tested. These experiments highlight the pivotal role of 3beta-hydroxysteroid dehydrogenase/ketoisomerase in the control of AD formation for its subsequent aromatization to estrogen. It raises the possibility that differences in metabolism of DHEA by certain brain cells could account for differences in their immunomodulatory and neuroprotective functions. Some could exert their effects by converting DHEA to its 7-hydroxylated form while others, like BV2 microglia, by converting DHEA primarily to other C-19 steroids and to estrogen by way of AD.  相似文献   

4.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

5.
The rate of metabolism of the multifunctional neurosteroid, dehydroepiandrosterone (DHEA), by embryonic rat hippocampal cells maintained in culture was compared to that of 4-androstenedione (AD), the immediate precursor of estrone (E1). The experiments were carried out to assess the relative contribution of DHEA, its 7-hydroxylated metabolites and estrogen on their reported effects on memory and neuroprotection. The 3H-labeled steroids of high specific radioactivity were incubated for 1, 8, 24 and 48 h and the putative metabolites extracted from the culture medium with acetone-ethyl acetate before separation by TLC for radioassay. [3H]DHEA (2.0 ng/5x10(5) cells) yielded primarily the 7alpha- and 7beta-hydroxylated steroids in an almost equal ratio under conditions that resembled those used by others to study the protection of neurons by hippocampal astrocytes against excitatory amino acid-induced toxicity. The rate of conversion of DHEA to AD, and particularly to E1, was much lower. With [3H]AD as substrate, significant aromatization to estrogen occurred only after 24 h when most of [3H]DHEA had already been converted to its 7-hydroxylated products and the hydroxylase and aromatase systems would no longer be competing for the same coenzyme (NADPH). The hippocampal cells were still viable after 48 h of incubation with the steroids and were able to oxidize estradiol (E2) to E1 and reduce E1 to E2 and AD to testosterone (T). It is suggested that 7alpha- and 7beta-OHDHEA, the main metabolites formed in the rat hippocampus, might be responsible for some of the functions previously ascribed to estrogens in the brain and the reasons for this proposal are discussed.  相似文献   

6.
Glucuronidation, catalyzed by UDP-glucuronosyltransferases (UGT) and sulfation, catalyzed by sulfotransferases (SULT), are pathways through which sex steroids are metabolized to less active compounds. These enzymes are highly polymorphic and genetic variants frequently result in higher or lower activity. The phenotypic effects of these polymorphisms on circulating sex steroids in premenopausal women have not yet been investigated. One hundred and seventy women aged 40-45 years had a blood sample drawn during the follicular phase of the menstrual cycle for sex steroid measures and to obtain genomic DNA. Urine was collected for 2-hydroxy (OH) estrone (E(1)) and 16α-OH E(1) measures. Generalized linear regression models were used to assess associations between sex steroids and polymorphisms in the UGT1A and UGT2B families, SULT1A1, and SULT1E1. Women with the UGT1A1(TA7/TA7) genotype had 25% lower mean estradiol (E(2)) concentrations compared to the wildtype (TA6/TA6) (p=0.02). Similar associations were observed between SULT1A1(R213/H213) and E(1) (13% lower mean E(1) concentration vs. wildtype; p-value=0.02) and UGT2B4(E458/E458) and dehydroepiandrosterone (DHEA) (20% lower mean DHEA vs. wildtype; p-value=0.03). The SULT1E1(A/C) and the UGT1A1(TA7)-UGT1A3(R11) haplotypes were associated with reduced estrogen concentrations. Further study of UGT and SULT polymorphisms and circulating sex steroid measures in larger populations of premenopausal women is warranted.  相似文献   

7.
Long-term alcohol consumption results in menstrual irregularities due to the inhibition of progesterone secretion. Some progesterone metabolites, including three pregnanolone isomers (PI), abate, while pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) increase, alcohol tolerance. The rationale of this study was to evaluate how the neuroactive steroids reflect the impaired progesterone formation in premenopausal women treated for alcohol addiction, and whether detoxification therapy could restore female reproductive functions and psychosomatic stability by reinstatement of the steroid biosynthesis. Accordingly, serum allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one (P3alpha5alpha)), pregnanolone (P3alpha5beta), isopregnanolone (P3beta5alpha) and epipregnanolone (P3beta5beta), progesterone, PregS, pregnenolone, 17alpha-hydroxy-pregnenolone (Preg17), 17alpha-hydroxy-progesterone (Prog17), DHEA, DHEAS, cortisol and estradiol were measured in 20 women during the therapy (start, 3 days, 14 days, 1 month, 4 months), and in 17 controls, using GC-MS or RIA and evaluated by age-adjusted ANCOVA with status and phase of the menstrual cycle (PMC) as factors, and status-PMC interaction. The patients exhibited depressed progesterone, Prog17, PI, and estradiol, a decreased progesterone/pregnenolone ratio, a decreased ratio of neuroinhibiting P3alpha5alpha to neuroactivating PregS, and an elevated PregS and PregS/pregnenolone ratio. The treatment mostly restored the indices. The reduction of neuroinhibiting pregnanolone isomers in the patients is primarily associated with the impairment in ovarian steroid biosynthesis. Nevertheless, changes in enzyme activities connected with the formation of PI and the influence of altered physiological requirements on the balance between endogenous neuroinhibiting and neuroactivating steroids are also likely. The reinstatement of serum estradiol, progesterone, and PI during the therapy demonstrates its favorable effect on both reproductive functions and the psychosomatic stability of the patients.  相似文献   

8.
Dehydroepiandrosterone (DHEA), a 19-carbon precursor of sex steroids, is abundantly produced in the human but not the mouse adrenal. However, mice produce DHEA and DHEA-sulfate (DHEAS) in the fetal brain. DHEA stimulates axonal growth from specific populations of mouse neocortical neurons in vitro, while DHEAS stimulates dendritic growth from those cells. The synthesis of DHEA and sex steroids, but not mouse glucocorticoids and mineralocorticoids, requires P450c17, which catalyzes both 17 alpha-hydroxylase and 17,20-lyase activities. We hypothesized that P450c17-knockout mice would have disordered sex steroid synthesis and disordered brain DHEA production and thus provide phenotypic clues about the functions of DHEA in mouse brain development. We deleted the mouse P450c17 gene in 127/SvJ mice and obtained several lines of mice from two lines of targeted embryonic stem cells. Heterozygotes were phenotypically and reproductively normal, but in all mouse lines, P450c17(-/-) zygotes died by embryonic day 7, prior to gastrulation. The cause of this early lethality is unknown, as there is no known function of fetal steroids at embryonic day 7. Immunocytochemistry identified P450c17 in embryonic endoderm in E7 wild-type and heterozygous embryos, but its function in these cells is unknown. Enzyme assays of wild-type embryos showed a rapid rise in 17-hydroxylase activity between E6 and E7 and the presence of C(17,20)-lyase activity at E7. Treatment of pregnant females with subcutaneous pellets releasing DHEA or 17-OH pregnenolone at a constant rate failed to rescue P450c17(-/-) fetuses. Treatment of normal pregnant females with pellets releasing pregnenolone or progesterone did not cause fetal demise. These data suggest that steroid products of P450c17 have heretofore-unknown essential functions in early embryonic mouse development.  相似文献   

9.
A highly sensitive and specific method has been developed for the simultaneous measurement of free (unconjugated) or sulfate-conjugated forms of dehydroepiandrosterone (DHEA), 7alpha-hydroxy-DHEA (7alpha-OH-DHEA), 7beta-hydroxy-DHEA (7beta-OH-DHEA), and 7-oxo-DHEA (7-oxo-DHEA) in human serum. This method is based upon a stable isotope-dilution technique by gas chromatography-selected-ion monitoring mass spectrometry. Free steroids were extracted from serum with an organic solvent and the sulfate-conjugated steroids remained in aqueous phase. Free steroids were purified by solid-phase extraction, while sulfate-conjugated steroids were hydrolyzed by sulfatase and deconjugated steroids were purified by solid-phase extractions. The extracts were treated with O-methylhydroxylamine hydrochloride and were subsequently dimethylisopropylsilylated. The resulting methyloxime-dimethylisopropylsilyl (MO-DMIPS) ether derivatives were quantified by gas chromatography-selected-ion monitoring mass spectrometry in a high-resolution mode. The detection limits of MO-DMIPS ether derivatives of DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA were 1.0, 0.5, 0.5 and 2.0pg, respectively. Coefficients of variation between samples ranged from 10.6 to 22.9% for free 7-oxygenated DHEA to less than 10% for DHEA and sulfate-conjugated 7-oxygenated DHEA. The concentrations of these steroids were measured in 18 sera samples from healthy volunteers (9 males and 9 females; aged 23-78 years). Free DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA levels ranged between 0.21-3.55, 0.001-0.194, 0.003-0.481, and 0.000-0.077ng/ml, respectively, and the sulfate-conjugated steroid levels of these metabolites ranged between 253-4681, 0.082-3.001, 0.008-0.903, and 0.107-0.803ng/ml, respectively. The free DHEA-related steroid concentrations were much lower than those previously measured by RIA and low-resolution GC-MS. The present method made it possible to determine simultaneously serum DHEA-related steroid levels with sufficient sensitivity and accuracy.  相似文献   

10.
With a view to establishing whether first-trimester human placentas possess the ability to synthesize DHEA from cholesterol, homogenates of this tissue obtained from two groups of women undergoing elective termination of normally progressing pregnancy between 10 - 12 weeks gestation (n = 5, age 23 - 29 years and n = 5, age 21 - 27 years) were incubated separately with [26-(14)C]cholesterol for the generation of [14C]isocaproic acid + pregnenolone and [7n-3H]pregnenolone for the biosynthesis of [3H]DHEA. Controls consisted of homogenates heated in a boiling water bath for 10 min. Using the reverse-isotope dilution analysis, desmolase efficiency expressed as mean specific activity of [14C]isocaproic acid varied from 282 to 725 dpm/mmol, while that of 17 alpha-hydroxylase and steroid C-17,20-lyase, catalyzed conversion of [7n-3H]pregnenolone to [3H]DHEA varied from 3498 to 26 258 dpm/mmol. The corresponding efficiencies of enzymicconversion varied between 5.8 x 10( -2) and 1.5 x 10( -1) % for [14C]isocaproic acid, but between 5.5 x 10( -2) and 4.1 x 10( -1) % for [3H]DHEA. No such metabolite was evident in the controls of heat-denatured homogenates. These are the first study results to demonstrate that early placentas are capable of converting cholesterol to pregnenolone to DHEA, contrary to the widely held concept of DHEA production by fetal and maternal adrenal glands. This finding has important physiological implications and could provide a new dimension to the concept of fetoplacental steroidogenesis.  相似文献   

11.
Human tonsils were assessed for their ability to 7alpha-hydroxylate pregnenolone (PREG), dehydroepiandrosterone (DHEA) and 3-epiandrosterone (EPIA). Both 7alpha-hydroxy-DHEA and 7alpha-hydroxy-EPIA were produced by homogenates of either whole tonsils or of lymphocyte-depleted tonsil fractions. In contrast, isolated lymphocytes were found to be unable to carry out 7alpha-hydroxylation. When co-cultures of tonsil-derived T and B lymphocytes were set up under stimulatory conditions, IgGs were released in the supernatants and could be quantitated, and immunomodulating properties of different steroids were monitored. When PREG was added to a mixture of tonsil-derived B and T lymphocytes, a decrease of non-specific and specific IgG was observed. An increase in specific anti-tetanus toxoid and anti-Bordetella pertussis antigen IgGs was obtained with either 1 microM 7alpha-hydroxy-DHEA or 1 microM 7alpha-hydroxy-EPIA. In contrast, DHEA and EPIA were unable to trigger such an effect. When cultures of isolated tonsillar B cells were used, none of the steroids tested showed significant effects on specific IgG productions. These data led to the conclusion that human tonsillar cells transform DHEA and EPIA, but not PREG, into 7alpha-hydroxylated metabolites. These metabolites could act on target tonsillar T lymphocytes which in turn act upon B lymphocytes for increasing specific IgG production.  相似文献   

12.
Simultaneous determination of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone (DHEA) and 17-hydroxyprogesterone has been developed for human cerebral tissue. Before immunoassay, steroids were separated on a Celite column with propylene glycol as stationary phase with hexane containing increasing proportions of dichloromethane as mobile phase. This system allowed separation of steroids of similar polarity, especially of pregnenolone and progesterone. The brain regions studied cortex (prefrontal, parietal and temporal), cerebellum and corpus callosum, were obtained after autopsy from 9 women and 1 man between 76 and 93 years of age. Steroids were found in all regions. The overall concentrations expressed in nmol/kg of tissue were: 10.1, 7.6, 120.7, 19.6 and 10.4 respectively, for progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone, corresponding to 7.3, 4.9, 74, 6.5 and 9.2 times the plasma levels. These very high concentrations, not previously described in human brain tissue, pose the question of the existence of local biosynthetic pathways independent of the peripheral endocrine gland system as well as that of progressive accumulation of steroids over a lifetime. Concentrations of each steroid in each subject varied little among the various brain regions studied, but there was much variation among the subjects with respect to the concentrations of a given steroid.  相似文献   

13.
This report describes a radioimmunoassay (RIA) method for the combined measurement of four steroid sulfoconjugates and their four unconjugated counterparts in maternal and fetal ovine plasma: pregnenolone (delta 5P), 17-hydroxypregnenolone (17 delta 5P), dehydroepiandrosterone (DHEA), and estrone (E1). In the procedure a preliminary ether extraction is utilized to isolate the unconjugated steroids followed by salting out, ethyl acetate extraction, and mineral acid solvolysis of the remaining sulfated steroids. The hydrolyzed sulfoconjugates are then separated chromatographically and measured in a manner identical to their unconjugated counterparts. The combined measurement of these eight steroids in single samples of fetal and maternal ovine plasma has not been reported previously and plasma concentrations of these steroids were heretofore unknown. Since no previous data was available for comparison, rigorous specificity evaluation of this RIA system was required prior to its use for physiologic studies and the reporting of concentrations in this species.  相似文献   

14.
Dehydroepiandrosterone (DHEA), administered per os, serves to prevent or retard the development of a variety of genetic and induced disorders in mice and rats. This treatment also results in the development of hepatomegaly, a change of liver color from pink to mahogany, peroxisome proliferation in hepatocytes and alterations in hepatocyte mitochondria morphology and respiration. We used one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) to identify changes in the relative levels of liver proteins produced by DHEA treatment of rodents. In mouse liver, there were apparent increases in the levels of 26 proteins and decreases in the levels of 7 proteins. Of the induced proteins the most prominent had Mr approximately 72 K; this protein was identified in a previous study as enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Another protein of Mr approximately 28 K, of unknown nature, also was induced markedly by DHEA treatment of mice and rats. A protein of Mr approximately 160 K, which was identified as carbamoyl phosphate synthetase-I (CPS-I), was decreased markedly by DHEA action. This enzyme, which comprises approx. 15-20% of mitochondrial matrix protein, is involved in the entry and rate-limiting step of the urea cycle. The specific activity of CPS-I also was significantly decreased by DHEA, but serum urea levels were normal. To determine whether steroids other than DHEA also induced similar changes, mice were treated with various steroids for 14 days and, thereafter, liver proteins were evaluated by SDS-PAGE: estradiol-17 beta and isoandrosterone induced both the approximately 72 and approximately 28 kDa proteins, testosterone and androsterone induced the 28 kDa protein only, but etiocholanolone, pregnenolone and progesterone were without effect. The findings of this study serve to demonstrate that: (i) hepatic protein levels are affected by DHEA treatment of mice and rats; (ii) liver CPS-I activity is decreased significantly by DHEA treatment, but serum urea levels remain within the normal range; and (iii) sex steroids and some of their precursors, when administered per os, also alter liver protein levels.  相似文献   

15.
Concentrations of neurosteroids may be influenced by some physiological or pathological factors. We investigated neuroactive steroids in the serum of women suffering from anxiety-depressive disorder treated with fluoxetine and in a control group, in both the follicular and the luteal phases of the menstrual cycle. Two groups of neuroactive steroids were measured by radioimmunoassays: 1) the positive allosteric modulator of GABAA receptors, allopregnanolone with its precursor progesterone and 2) pregnenolone sulfate and dehydroepiandrosterone sulfate (DHEAS) acting on GABAA receptors by an opposite mechanism. Significantly higher levels of pregnenolone sulfate (p < 0.0001) were found in patients in both phases of the menstrual cycle. Significantly higher values were recorded in pregnenolone (p < 0.001) and 17-hydroxy-pregnenolone (p < 0.01) levels in the patients group in the follicular phase. Our results indicate that imbalance in neuroactive steroids may play a negative role in origin and course of psychiatric and neurological disorders.  相似文献   

16.
The course of the transformation of six 5-ene steroids with varying substituents at C-17 or/and C-3: dehydroepiandrosterone (DHEA), 5-androsten-3beta,17beta-diol, 17alpha-methyl-5-androsten-3beta,17beta-diol, 5-androsten-17-one, 5-androsten-3beta-ol and pregnenolone by Fusarium culmorum was investigated. Three substrates with oxygen functions at C-3 and C-17 i.e. DHEA, 5-androsten-3beta,17beta-diol and 17alpha-methyl-5-androsten-3beta,17beta-diol were hydroxylated entirely at 7alpha-axial, allylic position. The mixture of 7alpha-hydroxy- and 7alpha,15alpha-dihydroxyderivatives was formed during the transformation of pregnenolone and 5-androsten-17-one, from the latter 2alpha,7alpha-dihydroxyderivative was also obtained. 7alpha,15alpha- Dihydroxyderivative was the only product isolated from the 5-androsten-3beta-ol post-transformation mixture. The time-course of the DHEA transformation by F. culmorum shows that the substrate induces 7alpha-hydroxylase activity. DHEA was transformed by androstenedione induced F. culmorum cultures to a larger extent than by a noninduced microorganism; the selectivity of the transformation remained unchanged.  相似文献   

17.
Studies to elucidate the role of dehydroepiandrosterone (DHEA) metabolism in neuroprotection have compared its relative 7-hydroxylation against estrogen formation by way of 4-androstenedione (AD) in various rodent brain cell lines. In all cases, the 7alpha- and 7beta-hydroxy epimers of DHEA were found to be the dominant products with one notable exception. BV2 mouse microglia were virtually unable to hydroxylate DHEA at C-7 and converted AD to a major unknown metabolite not observed with mouse BHc hippocampal cells. In this paper, we describe the identification of this compound based on its physical properties and analysis by TLC and HPLC. Its identity as 3beta-hydroxy-4-androstene-17-one, the Delta(4)-isomer of DHEA, was confirmed by mass spectrometry (LC/MS), as well as by reverse isotope dilution analysis involving co-crystallization with the synthetic steroid. Possible mechanisms for the formation of this isomer of DHEA by BV2 microglia are proposed, together with that of other C-19 steroids detected which include testosterone (T), 5alpha-dihydrotestosterone and 5alpha-androstanedione.  相似文献   

18.
Lathe R 《Steroids》2002,67(12):967-977
B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.  相似文献   

19.
The term neurosteroids applies to steroids that are synthesized in the nervous system, either de novo from cholesterol or from steroid hormone precursors. RIA was used to determine plasma and brain levels of the neurosteroids pregnenolone (PREG), ehydroepiandrosterone (DHEA), and their sulfate derivatives (PREG-S and DHEA-S) in male and female rats after administration of two typical stress hormones: corticotropin-releasing hormone (CRH) and adrenocorticotropin hormone (ACTH). In all cases, the parameters measured were detectable in plasma and brain. PREG, PREG-S, and DHEA increased significantly in plasma and brain after CRH and ACTH administration in males and females. Because neurosteroids play an important role in mammalian physiology, including that of humans, stress situations may alter the physiological functions regulated by these neurosteroids.  相似文献   

20.
Neuropsychopharmacological properties of neuroactive steroids.   总被引:4,自引:0,他引:4  
R Rupprecht  F Holsboer 《Steroids》1999,64(1-2):83-91
In addition to the well-known genomic effects of steroid molecules via intracellular steroid receptors, certain steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels. Several of these steroids accumulate in the brain after local synthesis or after metabolism of adrenal steroids. The 3alpha-hydroxy ring A-reduced pregnane steroids allopregnanolone and tetrahydrodeoxycorticosterone have been thought not to interact with intracellular receptors, but enhance gamma-aminobutyric acid (GABA)-mediated chloride currents, whereas pregnenolone sulfate and dehydroepiandrosterone (DHEA) sulfate display functional antagonistic properties at GABA(A) receptors. We demonstrated that these neuroactive steroids can regulate also gene expression via the progesterone receptor after intracellular oxidation. Thus, in physiological concentrations these neuroactive steroids regulate neuronal function through their concurrent influence on transmitter-gated ion channels and gene expression. When administered in animal studies, memory-enhancing effects have been shown for pregnenolone sulfate and DHEA. The 3alpha-hydroxy ring A-reduced neuroactive steroids predominantly display anxiolytic, anticonvulsant, and hypnotic activities. Sleep studies evaluating the effects of progesterone as a precursor molecule for these neuroactive steroids revealed a sleep electroencephalogram pattern similar to that obtained by the administration of benzodiazepines. These findings extend the concept of a "cross-talk" between membrane and nuclear hormone effects and provide a new role for the therapeutic application of these steroids in neurology and psychiatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号