首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The role of the nef gene in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. To provide a basis for studies on the role of nef in AIDS, we used targeted polymerase chain reaction amplification and DNA sequencing to determine the structure of nef genes in pathologic tissue from HIV-1-infected children and adults. We find that the nef reading frame is open in 92% of clones derived from both brain and lymphocytic tissue of children, suggesting that nef is expressed in these tissues. One HIV-1 clone, BRVA, obtained by coculture from the brain of an adult AIDS patient with progressive dementia, was previously shown to contain a duplicated region in nef. We show here that similar duplications are widespread in both adults and children with AIDS. However, coculture strongly selects against the broad spectrum of nef quasispecies found in tissue. These findings suggest functional selection for nef quasispecies in pathologic tissues during HIV-1 infection of the human host.  相似文献   

7.
BACKGROUND: Studies of human immunodeficiency virus type 1 (HIV-1) associated dementia have shown neuronal loss in discrete areas. The presence and mechanism of neuronal death, however, has remained quite elusive. One mechanism of cell death, apoptosis, has been clearly demonstrated outside the central nervous system (CNS) in HIV-1 infection but has not been firmly established within the CNS. Therefore, we set out to ascertain whether neuronal cell loss in simian immunodeficiency virus (SIV) encephalitis, an animal model of HIV-1-associated dementia, is a result of apoptosis. MATERIALS AND METHODS: With the aid of an in situ technique for identifying the 3'-OH ends of newly fragmented DNA characteristic of apoptosis, in conjunction with specific detected morphological criteria via light microscopy, we have examined encephalitic and nonencephalitic brains of macaques infected with a neurovirulent, neuroendotheliotropic strain of SIV to see if virus is spatially associated with apoptosis of neurons and non-neuronal cell types. RESULTS: We demonstrate the presence of DNA damage, indicative of apoptosis, in neurons, endothelial cells, and glial cells of the CNS of SIV-infected macaques. Furthermore, we observe an association between the localization of cells with significant DNA fragmentation and perivascular inflammatory cell infiltrates containing SIV-infected macrophages and multinucleated giant cells. Quantitative analysis reveals significantly more cells with DNA fragmentation in the CNS of macaques infected with neurovirulent, neuroendotheliotropic SIV strains as compared with strictly lymphocyte-tropic SIV strains and SIV negative controls. CONCLUSIONS: Our findings of apoptosis in SIV-infected CNS may potentially lead to a better understanding of the AIDS dementia complex, ultimately providing a basis for better treatments.  相似文献   

8.
《Autophagy》2013,9(5):704-706
Human immunodeficiency virus type 1 (HIV-1) establishes a persistent infection characterized by progressive depletion of CD4+ lymphocytes and immunosuppression. Although extensive research has examined the importance of apoptosis as a cause of cell death associated with HIV-1 infection, the role of autophagy has been largely ignored. Our laboratory has examined the autophagic process in HIV-1-infected cells. Following infection of human peripheral blood CD4+ T-cells or U937 cells with HIV-1 for 48 hours, the autophagy proteins Beclin 1 and LC3-II were found to be markedly decreased. Beclin 1 mRNA expression and autophagosomes were also reduced in HIV-1 infected cells. Thus, our data indicate that HIV-1 infection inhibits autophagy in infected cells in contrast to the previously described induction of autophagy by gp120 in uninfected bystander cells. It is likely that HIV-1 has evolved this mechanism as part of an elaborate attempt to evade the immune system while promoting its own replication. We believe that autophagy is an overlooked mechanism in HIV-1 pathogenesis and plays a particularly important role in the early cognitive impairment and dementia often associated with advanced AIDS. A model is presented that describes the potential role of autophagy in NeuroAIDS.

Addendum to: Zhou D, Spector SA. Human immunodeficiency virus type-1 infection inhibits autophagy. Aids 2008;22:695-9.  相似文献   

9.
Thirty-one histologically abnormal brains from patients with AIDS were studied in order to establish the relationship between multinucleated giant cells, viral protein expression, the various forms of human immunodeficiency virus type 1 (HIV-1) DNA, and clinical evidence of dementia. Unintegrated HIV-1 DNA of 2 to 8 kb was found in 22 of the 31 brains. Multinucleated giant cells without any other pathology were found in 14 cases; unintegrated 1-long terminal repeat (1-LTR) circular forms of HIV-1 DNA and strongly positive immunohistochemistry for gp41 and p24 were found in most of these brains. Most of these patients had a clinical diagnosis of HIV-1-associated dementia and cerebral atrophy. In all the other brains studied, 1-LTR circles were absent and immunohistochemistry for gp41 and p24 was usually negative. Very few of these patients had a clinical diagnosis of dementia. Sequence comparison of the LTR region from integrated HIV-1 DNA with that from unintegrated 1-LTR circular forms of HIV-1 DNA in 12 cases showed no significant differences. A further comparison of these brain-derived LTR sequences with LTR sequences derived directly from lymphoid tissue also showed strong sequence conservation. The V3 loop of the virus from the brain was sequenced in 6 cases and had a non-syncytium inducing-macrophage-tropic genotype. Our results show that (i) although unintegrated HIV-1 DNA was present in most brains from patients with AIDS, molecular evidence of high levels of viral replication was associated with the presence of multinucleated giant cells and dementia, and that (ii) the HIV-1 LTR is not a determinant of neurotropism. These observations suggest that replication of HIV-1 and not just the presence of HIV-1 DNA within giant cells makes the important contribution to central nervous system damage.  相似文献   

10.
11.
Neuronal apoptosis within the central nervous system (CNS) is a characteristic feature of AIDS dementia, and it represents a common mechanism of neuronal death induced by neurotoxins (e.g., glutamate) released from human immunodeficiency virus (HIV)-infected macrophages (HIV/macrophage-induced neurotoxicity). Neuronal apoptosis may result from activation of the intrinsic (mitochondrial/bcl-2 regulated) or extrinsic (death receptor) pathways, although which pathway predominates in CNS HIV infection is unknown. Apoptosis initiated by the intrinsic pathway is typically blocked by antiapoptosis Bcl-2 family proteins, such as Bcl-2 and Bcl-xL, but whether these can block HIV/macrophage-induced neuronal apoptosis is unknown. To determine the potential role of the Bcl-2 family in HIV/macrophage-induced neuronal apoptosis, we developed a unique in vitro model, utilizing the NT2 neuronal cell line, primary astrocytes and macrophages, and primary CNS HIV type 1 (HIV-1) isolates. We validated our model by demonstrating that NT2.N neurons are protected against HIV-infected macrophages by N-methyl-D-aspartate (NMDA) glutamate receptor antagonists, similar to effects seen in primary neurons. We then established stable NT2.N neuronal lines that overexpress Bcl-2 or Bcl-xL (NT2.N/bcl-2 and NT2.N/bcl-xL, respectively) and determined their sensitivity to macrophages infected with primary R5, X4, and R5/X4 HIV-1 isolates. We found that NT2.N/bcl-2 and NT2.N/bcl-xL neurons were resistant to apoptosis induced by either R5, X4, or R5/X4 isolates and that resistance was abrogated by a Bcl-2 antagonist. Thus, the NMDA receptor/bcl-2-regulated apoptotic pathway contributes significantly to HIV/macrophage-induced neuronal apoptosis, and Bcl-2 family proteins protect neurons against the spectrum of primary HIV-1 isolates. Modulation of bcl-2 gene expression may therefore offer adjunctive neuroprotection against development of AIDS dementia.  相似文献   

12.
It is very likely that perinatal human immunodeficiency virus type 1 (HIV-1) infection is influenced by a combination of virologic and host factors. A greater understanding of the role played by various risk factors for HIV-1 infection is crucial for the design of new preventive and therapeutic strategies. In recent years, a number of studies have suggested that host genetic factors are important determinants of both the susceptibility to perinatal HIV-1 infection and the subsequent pathogenesis of acquired immunodeficiency syndrome (AIDS). Control of HIV-1 infection involves the processing of specific viral peptides and their presentation to cells of the immune system by highly polymorphic human leukocyte antigen (HLA) alleles. The contribution of multiple HLA class I and II alleles in modulating pediatric HIV/AIDS outcomes has now been confirmed by several independent groups. Penetration of HIV-1 into cells is mediated by interaction between CD4 and chemokine receptors that serve as entry coreceptors. Genetic polymorphisms in chemokine ligand and chemokine receptor genes have recently been associated both with mother-to-child HIV-1 transmission and disease progression in children. These observations suggest a key role for genetic factors in pediatric HIV-1 infection. This article describes the current state of knowledge regarding host genetic influences on pediatric HIV-1 infection and discusses the role of these genes in HIV/AIDS pathogenesis.  相似文献   

13.
14.
Glutamate-mediated neurodysfunction in human immunodeficiency virus (HIV) infection has been primarily suggested by in vitro studies. The regulation of glutamatergic neurotransmission in inflammation is a complex interaction between activation of immune mediators and adaptive changes in the functional elements of the glutamatergic synapse. We have used simian immunodeficiency virus (SIV)-infected macaques to answer the questions (i) whether perturbation of glutamate neurotransmission is evident during progression of immunodeficiency disease and (ii) what are the mechanisms underlying this impairment. Disease progression in SIV-infected macaques both in the periphery and in the brain was documented by clinical and general pathological examination, plasma and brain viral RNA load, T-cell analysis and brain histopathology. We report for the first time, disruption of excitatory amino acid transporters (EAATs), the cardinal glutamate clearing system, during SIV infection and a dramatic loss of EAATs associated with development of rapid acquired immunodeficiency syndrome (AIDS). EAATs impairment was correlated with activation status of microglia. Our data support the glutamate hypothesis for the development of HIV dementia and suggest that the pathogenetic mechanism for the neurodysfunction is the impairment of glutamate clearing which occurs in the stage of AIDS and which is associated with activated microglia.  相似文献   

15.
16.
Spector SA  Zhou D 《Autophagy》2008,4(5):704-706
Human immunodeficiency virus type 1 (HIV-1) establishes a persistent infection characterized by progressive depletion of CD4(+) lymphocytes and immunosuppression. Although extensive research has examined the importance of apoptosis as a cause of cell death associated with HIV-1 infection, the role of autophagy has been largely ignored. Our laboratory has examined the autophagic process in HIV-1-infected cells. Following infection of human peripheral blood CD4(+) T-cells or U937 cells with HIV-1 for 48 hours, the autophagy proteins Beclin 1 and LC3-II were found to be markedly decreased. Beclin 1 mRNA expression and autophagosomes were also reduced in HIV-1 infected cells. Thus, our data indicate that HIV-1 infection inhibits autophagy in infected cells in contrast to the previously described induction of autophagy by gp120 in uninfected bystander cells. It is likely that HIV-1 has evolved this mechanism as part of an elaborate attempt to evade the immune system while promoting its own replication. We believe that autophagy is an overlooked mechanism in HIV-1 pathogenesis and plays a particularly important role in the early cognitive impairment and dementia often associated with advanced AIDS. A model is presented that describes the potential role of autophagy in NeuroAIDS.  相似文献   

17.
Feline immunodeficiency virus (FIV) induces a disease state in the domestic cat that is similar to AIDS in human immunodeficiency virus (HIV)-infected individuals. As with HIV, FIV can be divided into primary and cell culture-adapted isolates. Adaptation of FIV to replicate and form syncytia in the Crandell feline kidney (CrFK) cell line is accompanied by an increase in the net charge of the V3 loop of the envelope glycoprotein, mirroring the changes observed in the V3 loop of HIV gp120 with the switch from a non-syncytium-inducing phenotype to a syncytium-inducing phenotype. These data suggest a common mechanism of infection with FIV and HIV. In this study, we demonstrate that cell culture-adapted strains of FIV are able to use the alpha-chemokine receptor CXCR4 for cell fusion. Following ectopic expression of human CXCR4 on nonpermissive human cells, the cells are able to fuse with FIV-infected feline cells. Moreover, fusion between FIV-infected feline cells and CXCR4-transfected human cells is inhibited by both anti-CXCR4 and anti-FIV antibodies. cDNAs encoding the feline CXCR4 homolog were cloned from both T-lymphoblastoid and kidney cell lines. Feline CXCR4 displayed 94.9% amino acid sequence identity with human CXCR4 and was found to be expressed widely on cell lines susceptible to infection with cell culture-adapted strains FIV. Ectopic expression of feline CXCR4 on human cells rendered the cells susceptible to FIV-dependent fusion. Moreover, feline CXCR4 was found to be as efficient as human CXCR4 in supporting cell fusion between CD4-expressing murine fibroblast cells and either HIV type 1 (HIV-1) or HIV-2 Env-expressing human cells. Previous studies have demonstrated that feline cells expressing human CD4 are not susceptible to infection with HIV-1; therefore, further restrictions to HIV-1 Env-dependent fusion may exist in feline cells. As feline and human CXCR4 support both FIV- and HIV-dependent cell fusion, these results suggest a close evolutionary link between FIV and HIV and a common mechanism of infection involving an interaction between the virus and a member of the seven-transmembrane domain chemokine receptor family of molecules.  相似文献   

18.
The human immunodeficiency virus type-1 (HIV-1) regulatory protein Tat is produced in the early phase of infection and is essential for virus replication. Together with other viral products, Tat has been implicated in the pathogenesis of HIV-1-associated dementia (HAD). As HIV-1 infection in the brain is very limited and macrophage/microglial cells are the only cellular type productively infected by the virus, it has been proposed that many of the viral neurotoxic effects are mediated by microglial products. We and others have shown that Tat affects the functional state of microglial cells, supporting the hypothesis that activated microglia play a role in the neuropathology associated with HIV-1 infection. This review describes the experimental evidence indicating that Tat stimulates microglia to synthesize potentially neurotoxic molecules, including proinflammatory cytokines and free radicals, and interferes with molecular mechanisms controlling cAMP levels, intracellular [Ca2+], and ion channel expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号