首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substrate specificity and kinetic mechanism of spermidine N1-acetyltransferase from rat liver was investigated using a highly purified (18 000-fold) preparation from the livers of rats in which the enzyme was induced by treatment with carbon tetrachloride (1.5 ml/kg body wt. 6h before death). The enzyme catalysed the acetylation of spermidine, spermine, sym-norspermidine, sym-norspermine, N-(3-aminopropyl)-cadaverine, N1-acetylspermine, 3,3'-diamino-N-methyldipropylamine and 1,3-diaminopropane, but was inactive with putrescine, cadaverine, sym-homospermidine and N1-acetylspermidine. These results suggest that the enzyme is highly specific for the acetylation of a primary amino group that is separated by a three-carbon aliphatic chain from another nitrogen atom (i.e. the substrates are of the type H2N[CH2]3NHR). The maximal rates of acetylation of 1,3-diaminopropane and 3,3'-diamino-N-methyldipropylamine were much lower than the maximal rates with spermidine or sym-norspermidine as substrates, suggesting a preference for a secondary amino group bearing the aminopropyl group that is acetylated. The best substrates for acetylation were sym-norspermidine and sym-norspermine, which had Km values of about 10 micrograms and Vmax. values of about 2 mumol of product/min per mg of enzyme compared with Km of 130 microM and Vmax. of 1.3 mumol/min per mg for spermidine. N1-Acetylspermidine (the product of the reaction) and N8-acetylspermidine were weak inhibitors and were competitive with spermidine, having Ki values of about 6.6 mM and 0.4 mM respectively. N1-Acetylspermidine was a non-competitive inhibitor with respect to acetyl-CoA. CoA was also inhibitory to the reaction, showing non-competitive kinetics when either [acetyl-CoA] or [spermidine] was varied. These results suggest that the reaction occurs via an ordered Bi Bi mechanism in which spermidine binds first and N1-acetyl-spermidine is the final product to be released.  相似文献   

2.
A number of N-alkylated-1,3-diaminopropane derivatives [H2N-(CH2)3-NH-(CH2)nH, where n = 1-9] have been tested as potential inhibitors of partially purified rat hepatoma (HTC) cell or pure bovine spleen spermine synthase. Among the compounds described in this paper, the most potent competitive inhibitor of spermine synthase, with respect to spermidine, is N-butyl-1,3-diaminopropane with Ki values of 11.9 nM and 10.4 nM for the HTC cell and bovine spleen enzymes respectively. Inhibition of spermine synthase by this alkylated amine is selective since spermidine synthase activity is not affected up to 100 microM N-butyl-1,3-diaminopropane at a range of 5-200 microM putrescine. Added to the culture medium of growing HTC cells, N-butyl-1,3-diaminopropane causes the expected changes in the polyamine levels with a marked decrease of spermine and an increase of spermidine. Under these conditions cell growth continues unabated. Such N-alkylated-1,3-diaminopropane derivatives may have considerable potential as tools for studying the role of polyamines and in particular the functions of spermine in cell multiplication and differentiation.  相似文献   

3.
Ehrlich ascites carcinoma cells were cultured in the presence of difluoromethyl ornithine (DFMO) and micromolar concentrations of cadaverine for several months. This treatment resulted in a complete disappearance of putrescine and spermidine and reduced spermine content to traces of its normal content. The natural polyamines were replaced by cadaverine (about 40% of total polyamines), N-(3-aminopropyl)cadaverine (about 50%) and N,N′-bis(3-aminopropyl)cadaverine (about 5%). In comparison with untreated cells or cells grown in the presence of DFMO and putrescine, the “cadaverine cells” grew definitely slower, their protein synthesis was depressed while DNA and RNA syntheses proceeded at near normal rate. In spite of the high intracellular concentrations of cadaverine and its aminopropyl derivatives, the tumor cells grown in the presence of DFMO and cadaverine, behaved exactly like cells severly depleted of putrescine and spermidine. Though exposed to DFMO, ornithine decarboxylase activity was almost 10 times higher than that in untreated cells. S-Adenosyl-L-methionine decarboxylase activity was likewise strikingly elevated, and these cells transported methylglyoxal strikingly elevated, and these cells transported methylglyoxal bis(guanylhydrazone) (MGBG) at a rate that was more than 5 times faster than that in untreated cells. Furthermore, these cells exhibited arginase activity, which was less than one fifth of that found in untreated cells.  相似文献   

4.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, only labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine, gamma-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and delta-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, gamma-amino-n-butyric acid, 1,3-diaminopropane, beta-alanine and spermine. After the injections with bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, beta-alanine, 2-hydroxyputrescine and possibly gamma-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

5.
Euglene gracilis (strain Z) was found to contain five polyamines which could be separated by high-pressure cation-exchange chromatography. 1,3-Diaminopropane, putrescine, norspermidine (N-(3-aminopropyl)-1,3-diaminopropane), spermidine and norspermine (N,N'-bis(aminopropyl)-1,3-diaminopropane) were identified. Biosynthesis of putrescine in E. gracilis proceeds through decarboxylation of L-ornithine, no arginine decarboxylase (EC 4.1.1.19) activity could be detected. The properties of the enzymes ornithine decarboxylase (EC 4.1.1.17) and S-adenosylmethionine decarboxylase (EC 4.1.1.50) in this alga were found to be similar to those of the enzymes isolated from animal tissues or yeast cells. A bioxynthetic scheme is proposed which relates the different polyamines occurring in E. gracilis.  相似文献   

6.
Scenedesmus acutus contains about 10 major amines and at least 20 other amines which are present in very small quantities. The following amines were identified by mass spectrometry after separation of the trifluoroacetyl derivatives by gas-liquid chromatography and of the dansyl 2 derivatives by thin-layer chromatography: methylamine, dimethylamine, ethylamine, ethanolamine, putrescine, cadaverine, spermidine, N-(3-aminopropyl)-1,3-diaminopropane, N-(4-aminobutyl)-1,4-diaminobutane, 2-phenylethylamine, tyramine, piperazine, adenine, and γ-butyrolactam. The methods applied for the analyses of these amines are described and discussed.  相似文献   

7.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, obly labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine excreted labeled putrescine, γ-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and δ-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, γ-amino-n-butyric acid, 1,3-diaminopropane, β-alanine and spermine. After the injections with octadeuterospermine, labeled spermine, N-(3-aminopropyl)-N′-(2-carboxyethyl)-1,4-diaminobutane, N,N′-bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, β-alanine, 2-hydroxyputrescine and possibly γ-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

8.
Polyamine contents of various species of plants and fungi including Bryophyta, Pteridophyta, Gymnospermae, Ascomycota, Basidiomycota, and Lichenobionta were determined by the combination of six chromatographic techniques. Polyamines examined included putrescine, spermidine, spermine, 1,3-diaminopropane (diaminopropane), sym-norspermidine (norspermidine), sym-norspermine (norspermine), thermospermine, caldopentamine, homocaldopentamine, cadaverine, aminopropylcadaverine, sym-homospermidine (homospermidine), agmatine, and canavalmine. In addition to the widely occurring polyamines (putrescine, spermidine, and spermine), the "unusual" polyamines norspermidine and norspermine were found to be widely distributed in Bryophyta and Lichenobionta. These two polyamines were not detected in any species of Pteridophyta, Gymnospermae, and fungi even though their possible precursor, diaminopropane, was found in some species. Homospermidine was one of the major polyamines in Bryophyta and Lichenobionta, and was detected in most species of Pteridophyta and sporadically in higher plants. Agmatine was detected in most species of Bryophyta and in certain species of Gymnospermae. These data suggest that norspermidine, norspermine, and homospermidine can serve as chemical phylogenic and taxonomic markers in Plantae and Fungi.  相似文献   

9.
Eukaryotic protein synthesis initiation factor 4D (eIF-4D) (current nomenclature, eIF-5A) contains the unique amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). The first step in hypusine biosynthesis, i.e. the formation of the intermediate, deoxyhypusine (N epsilon-(4-aminobutyl)lysine), was carried out in vitro using spermidine, deoxyhypusine synthase, and ec-eIF-4D(Lys), an eIF-4D precursor prepared by over-expression of human eIF-4D cDNA in Escherichia coli. In a parallel reaction, using N-(3-aminopropyl)cadaverine in place of spermidine, a variant form of eIF-4D containing homodeoxyhypusine (N epsilon-(5-aminopentyl)lysine) was prepared. Evidence that N-(3-aminopropyl)cadaverine can also act as the amine substrate for deoxyhypusine synthase in intact cells was obtained by incubating putrescine- and spermidine-depleted Chinese hamster ovary cells with [3H]cadaverine. In these cells, in which [3H]cadaverine is readily converted to N-(3-aminopropyl) [3H]cadaverine, small amounts of [3H]homodeoxyhypusine and another 3H-labeled compound, presumed to be N epsilon-(5-amino-2-hydroxy[3H]pentyl)lysine, were found. eIF-4D stimulates methionyl-puromycin synthesis, an in vitro model assay for translation initiation. Whereas the unmodified precursor ec-eIF-4D(Lys) appeared inactive, the deoxyhypusine-containing form provided a significant degree of stimulation. The variant form containing homodeoxyhypusine, on the other hand, showed little or no activity. These findings emphasize the importance of hypusine or deoxyhypusine for the biological activity of eIF-4D and demonstrate the influence of both the length and chemical nature of its amino alkyl side chain.  相似文献   

10.
Deoxyhypusine synthase catalyzes the first step in hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) synthesis in a single cellular protein, eIF5A precursor. The synthesis of deoxyhypusine catalyzed by this enzyme involves transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein to form a deoxyhypusine-containing eIF5A intermediate, eIF5A(Dhp). We recently discovered the efficient reversal of deoxyhypusine synthesis. When eIF5A([3H]Dhp), radiolabeled in the 4-aminobutyl portion of its deoxyhypusine residue, was incubated with human deoxyhypusine synthase, NAD, and 1,3-diaminopropane, [3H]spermidine was formed by a rapid transfer of the radiolabeled 4-aminobutyl side chain of the [3H]deoxyhypusine residue to 1,3-diaminopropane. No reversal was observed with [3H]hypusine protein, suggesting that hydroxylation at the 4-aminobutyl side chain of the deoxyhypusine residue prevents deoxyhypusine synthase-mediated reversal of the modification. Purified human deoxyhypusine synthase also exhibited homospermidine synthesis activity when incubated with spermidine, NAD, and putrescine. Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine. The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM). Using [14C]putrescine as an acceptor, various spermidine analogs were evaluated as donor substrates for human deoxyhypusine synthase. Comparison of spermidine analogs as inhibitors of deoxyhypusine synthesis, as donor substrates for synthesis of deoxyhypusine (or its analog), and for synthesis of homospermidine (or its analog) provides new insights into the intricate specificity of this enzyme and versatility of the deoxyhypusine synthase reaction.  相似文献   

11.
Biomass production by Aspergillus fumigatus was greatest at 40–45°C and was associated with an increase in concentration of the diamine putrescine and activity of its biosynthetic enzyme ornithine decarboxylase. Concentrations of the other amines, cadaverine, spermidine and spermine were considerably lower than putrescine concentration and did not change significantly over the temperature range 20–50°C. This is surprising in view of the greatly increased flux of label from ornithine through to spermidine at 45 and 50°C, indicating an increased formation of this triamine. It is suggested that there was increased formation of spermidine derivatives at these temperatures. Interestingly, there was greatly increased formation of the higher homologues of cadaverine, aminopropylcadaverine and N,N′-bis(3-aminopropyl)cadaverine, in A. fumigatus at 45 and 50°C.  相似文献   

12.
We report here the characterization of the first agmatine/cadaverine aminopropyl transferase (ACAPT), the enzyme responsible for polyamine biosynthesis from an archaeon. The gene PF0127 encoding ACAPT in the hyperthermophile Pyrococcus furiosus was cloned and expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. P. furiosus ACAPT is a homodimer of 65 kDa. The broad substrate specificity of the enzyme toward the amine acceptors is unique, as agmatine, 1,3-diaminopropane, putrescine, cadaverine, and sym-nor-spermidine all serve as substrates. While maximal catalytic activity was observed with cadaverine, agmatine was the preferred substrate on the basis of the k(cat)/K(m) value. P. furiosus ACAPT is thermoactive and thermostable with an apparent melting temperature of 108 degrees C that increases to 112 degrees C in the presence of cadaverine. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. The crystal structure of the enzyme determined to 1.8-A resolution confirmed its dimeric nature and provided insight into the proteolytic analyses as well as into mechanisms of thermal stability. Analysis of the polyamine content of P. furiosus showed that spermidine, cadaverine, and sym-nor-spermidine are the major components, with small amounts of sym-nor-spermine and N-(3-aminopropyl)cadaverine (APC). This is the first report in Archaea of an unusual polyamine APC that is proposed to play a role in stress adaptation.  相似文献   

13.
A rapid high-performance liquid chromatographic method for the separation of polyamines as their dansyl derivative has been developed. The chromatographic system used consisted of a reversed-phase column and a mobile phase of acetonitrile and water. The separation of 1,3-diaminopropane, putrescine, cadaverine, spermidine and spermine takes only 9 min. This method provides a good resolution between 1,3-diaminopropane and putrescine. It has been applied to quantify polyamines from seeds of wheat, petals of Phalaenopsis hybrids and various rat tissues.  相似文献   

14.
Growth of P. aeruginosa, slowed by the addition of monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulfate, could be restored by addition of 0.1 mM putrescine plus 0.1 muM spermidine, or 0.1 mM spermidine or 5 mM putrescine by themselves. Lower concentrations of putrescine (0.1 mM - 1 mM) also partially reversed the growth inhibition. Conversion of putrescine to spermidine continued, although at a markedly reduced ratio, in the drug-inhibited cells, but intracellular spermidine concentrations remained depressed suggesting that reversal of inhibition by putrescine may be a direct effect. There was appreciable back-conversion of any added spermidine to putrescine with a demonstrable increase in total intracellular putrescine levels, making conclusions on the effects of spermidine ambiguous. Spermine (0.1 mM), a polyamine not present in bacteria, was also effective in reversing growth inhibition, probably because of its conversion into spermidine and putrescine. The effects of putrescine, spermidine and spermine were specific in that the non-physiological amines, 1,3-diaminopropane, 1,5-diaminopentane (cadaverine), 1,6-diaminohexane, or 1,7-diaminoheptane could not reverse the effects of the three drugs. Rates of total protein, RNA and DNA synthesis were all slowed to the same extent as growth rate and showed similar recovery with the addition of putrescine or spermidine. A role for putrescine in P. aeruginosa growth processes is suggested.  相似文献   

15.
Six novel N,N-dialkyl derivatives of spermidine were synthesised and examined for activity against the oat stripe pathogen Pyrenophora avenae. Two of these spermidine analogues, N,N-dimethyl-N1-(3-aminopropyl)-1,3-diaminopropane trihydrochloride (27) and N,N-dimethyl-N1-(3-aminopropyl)-1,4-diaminobutane trihydrochloride (28), reduced radial extension of P. avenae on plates when used at 2 mM, and caused more substantial reductions in fungal growth in liquid culture when used at 1 mM. Preliminary data suggest that neither compound affected polyamine biosynthesis, determined by following the incorporation of label from ornithine into polyamines and examining intracellular polyamine concentrations in fungal tissue.  相似文献   

16.
Abstract Polyamines were analyzed in 4 species of genus Agrobacterium . Not only putrescine, spermidine and spermine, but also homospermidine and thermospermine were found in A. tumefaciens, A. radiobacter, A. rubi and A. rhizogenes . Trace amounts of aminopropylhomospermidine were also observed. Norspermidine and norspermine were formed from diamonorpropane added to the medium. Aminopropylcadaverine and its aminopropyl derivative(s) (aminopentylnorspermidine and N,N '-bis(3-aminopropyl) cadaverine) were produced from the supplemented cadaverine. A strain of A. rhizogenes normally contains only putrescine and homospermidine; no other diamines, triamines and tetraamines were synthesized.  相似文献   

17.
The biosynthesis of deoxyhypusine (N-(4-aminobutyl)lysine) occurs by the transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in a precursor of eukaryotic translation initiation factor 4D (eIF-4D). Deoxyhypusine synthase, the enzyme that catalyzes this reaction, was purified approximately 700-fold from rat testis. The Km values for the substrates, spermidine, the eIF-4-D precursor protein, and NAD+, were estimated as approximately 1, 0.08, and 30 microM, respectively. After incubation of partially purified enzyme with [1,8-3H]spermidine, NAD+, and the eIF-4D precursor, equal amounts of radioactivity were found in free 1,3-diaminopropane and in protein-bound deoxyhypusine. However, when the protein substrate (eIF-4D precursor) was omitted, radioactivity was found in 1,3-diaminopropane and in delta 1-pyrroline in nearly equal quantities, providing evidence that the cleavage of spermidine occurs, albeit at a slower rate, in the absence of the eIF-4D precursor. That NAD+, which is required for this reaction, functions as the hydrogen acceptor was demonstrated by the fact that radioactivity from spermidine labeled with 3H at position 5 is found in NADH as well as in delta 1-pyrroline. Transfer of this hydrogen from spermidine to the re face of the nicotinamide ring of NAD+, as determined by the use of dehydrogenases of known stereospecificity, defines the first step of deoxyhypusine synthesis as a pro-R, or A, stereospecific dehydrogenation. Based on these findings, an enzyme mechanism involving imine intermediate formation is proposed.  相似文献   

18.
Polyamine degradation in foetal and adult bovine serum.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine.  相似文献   

19.
When bulb-scale segments of Lilium longiflorum were cultured on a medium containing auxin and cytokinin, the proportion of the expiants with newly-formed bulblets was significantly increased by the application of different polyamines. The most effective polyamine was spermine, where more than 90% of segments formed an average of 5 bulblets as compared to controls where less than 50% explants formed an average of 1.5 bulblets. Application of arginine one of the precursors putrescine biosynthesis, slightly promoted bulblet formation. The putrescine-stimulated bulblet formation was strongly inhibited by simultaneous addition of an inhibitor of the spermidine synthase, cyclohexylamine. The spermidine-promoted bulblet formation, however, could not be suppressed by this inhibitor. The promotive effect of spermidine on bulblet formation was reversed by an inhibitor of the spermine synthase, N-(3-aminopropyl)cyclohexylamine, but application of this inhibitor with spermine did not show any apparent effect on the bulblet formation. Endogenous level of spermine increased in common during bulblet formation that were stimulated by exogenous polyamines. Thus, spermine seemed to be the main stimulating chemical on bulblet formation in lily bulb-scale segments.Abbreviations APCHA N-(3-aminopropyl)cyclohexylamine - Arg arginine - BA benzyladenine - CHA cyclohexylamine - MS Murashige and Skoog's - NAA naphthaleneacetic acid - Orn ornithine - Put putrescine - Spd spermidine - Spm spermine  相似文献   

20.
The Escherichia coli mutant speE deficient in the gene encoding for spermidine synthase has no absolute requirement for spermidine but shows a retarded growth rate. This growth retardation could be unspecifically restored to the respective wild type level by exogenously supplied polyamines such as spermidine, spermine and homospermidine as well as the diamines putrescine and cadaverine. In comparison to the respective wild type, the mutant shows a two-fold increased level of endogenous putrescine but displays a reduced ability to accumulate the diamines putrescine and cadaverine. The ability to accumulate polyamines is not affected. The deleted spermidine synthase gene of the mutant was substituted by heterologous expression of the hss gene from Rhodopseudomonas viridis encoding homospermidine synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号