首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal reaction of [H2W12O42]10− precursors and CuCl2 in a CH3COOK/CH3COOH solution (pH 3.5) led to the isolation of a new compound, KNa3[Cu(H2O)2{Cu(H2O)3}2(H2W12O42)] · 16H2O (1). Compound 1 possesses a new anionic three-dimensional (3-D) open-framework based on the [H2W12O42]10− building blocks and CuII linkers. This anionic 3-D framework represents the first example of a (8,3)-connected structural topology in POM-based solid materials. The magnetic behavior of 1 exhibits weak antiferromagnetic interaction.  相似文献   

2.
The hydrothermal reactions of MoO3, As2O5, Cu(CH3CO2)2 · H2O and an appropriate organonitrogen ligand in the presence of HF as mineralizer yield a series of bimetallic oxides of the Cu/Mo/O/As system. The compounds [{Cu2(4,7-phen)(4,7-phenH)2}Mo12AsO40] · 2.66H2O (1 · 2.66H2O) and [{Cu3(qtpyr)2}Mo12AsO40] · 0.4H2O (2 · 0.4H2O) (qtpyr = 2,4′:5′, 3″:4″,2?-quaterpyridine) are two-dimensional phases constructed from Keggin clusters linked through binuclear {Cu2(4,7-phen)(4,7-Hphen)2}2+ units in metal organic networks in 2. In contrast, the structure of [{Cu2(2,4′-Hbpy)4}Mo18As2O62] · 2H2O (3 · 2H2O) is one-dimensional, consisting of Dawson clusters linked through binuclear {Cu2(Hbpy)4}6+ subunits. In the case of the compounds [{Cu(5,5′-dimethyl-2,2′-bpy)}2Mo2O4F2(AsO4)2] (4) and [{Cu(phen)}2Mo2O4F2(AsO4)2] (5), the fluoride mineralizer has been incorporated into the structure to give one-dimensional phases constructed from oxyfluoride {Mo2O4F2(AsO4)2}2−clusters bridged through {Cu(organonitrogen)}2+ units.  相似文献   

3.
Hydrothermal reactions were used in the preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class. Compound 1, [{Cu2(bpa)2(C2O4)}2V4O12]·H2O, is molecular, while [{Cu(terpy)}2V6O17] (2), [Cu2(bpyrm)V4O12] (4) and [{Cu(phen)(H2O)2}VOF4(H2O)]·2H2O (5) are two-dimensional, three-dimensional and one-dimensional, respectively (bpa = 2,2′-bipyridylamine; terpy = 2,2′:6,2″-terpyridine; bpyrm = 2,2′-bipyrimidine; phen = 1,10-phenanthroline). In contrast to the 2-D structure of 2, the Ni(II) analogue [{Ni(terpy)}2V4O12]·2H2O (3) is one-dimensional. The {V4O12}4− cluster is a building block of structures 1, 3, and 4 while 2 is constructed from {V6O17}4− rings.  相似文献   

4.
A new family of hybrid organic-inorganic materials built from polyoxotungstates and Cu(II) ions as linkers has been synthesized by hydrothermal reactions from a mixture of sodium tungstate, copper chloride and ethylenediamine. The initial pH and the presence or absence of heteroelement (P, Si) control the nature of the polyoxotungstate clusters and their connectivity via the copper ions, and hence the dimensionality of the framework. In the absence of heteroelement, three compounds have been isolated: at low pH (5) the molecular compound [Cu(en)2(H2O)]2[{Cu(en)2}H2W12O40] · 10H2O (1) is formed, at neutral pH the 3D material [{Cu(en)2}3{Cu(en)}2H2W12O42] · 27H2O (2) and at high pH (11) the 2D compound [Cu(en)2(H2O)2][Cu(en)2][{Cu(en)2}3H2W12O42] · 15H2O (3). In the whole range of pH (5-11.5) a single phase has been obtained with silicium as heteroelement, namely the 2D material [Cu(en)2(H2O)][{Cu(en)2}2SiW11CuO39] · 7H2O (4) with chains of Keggin polyoxotungstates linked by {Cu(en)2}2+ groups. Finally, a phosphotungstate with a chain-like structure has been characterized, [{Cu(en)2}3PW11CuClO39] · 6H2O (5), at low pH (5) which differs from the phase obtained at higher pH.  相似文献   

5.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

6.
Four new polyoxometalate compounds built on Preyssler anions and trivalent lanthanide cations, Na2[{Ce(H2O)8}4{Na(H2O)P5W30O110}] · 12H2O (1), H4Na4[Nd2(H2O)14{Na(H2O)P5W30O110}] · 22H2O (2), K2Na[Eu3(H2O)14(HNA)3{Eu(H2O)P5W30O110}] · 3H2O (3 NA = nicotinic acid) and H2[Ce4(H2O)16(HNA)6{Na(H2O)P5W30O110}] · 12H2O (4) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Compound 1 exhibits a tetrasupporting polyoxometalate cluster structure where four {Ce(H2O)8}3+ fragments are supported on the [Na(H2O)P5W30O110]14− cluster. Compound 2 shows a one-dimensional chain structure built from [Na(H2O)P5W30O110]14− clusters linked by Nd3+ cations. Compound 3 displays a one-dimensional chain structure constructed of [Eu(H2O)P5W30O110]12− clusters bridged by Eu3+ cations. Compound 4 has a 2D network formed by 1D chains and {Ce2(H2O)6(HNA)6}6+ linkers. Compounds 2-4 represent the first extended structures based on Preyssler anions. In addition, the fluorescent activity of compound 3 is reported.  相似文献   

7.
The hydroxocomplexes [{(H2O)M(μ2-OH)(P2W17O61)}2]14− (M = Zr, Hf) in HCl undergo cleavage of the hydroxo bridges with the formation of monomeric species [(H2O)3M(P2W17O61)]6−. In the case of Hf single crystals of the composition (Me2NH2)5.5(H)1.5[(Hf(H2O)3)0.9(WO)0.1{P2W17O61}]Cl·9.5H2O (1), as the result of co-crystallization of [(H2O)3Hf(P2W17O61)]6− and [P2W18O62]6− salts, were isolated from these solutions and structurally characterized. Zr gives (Me2NH2)2(H)4[{(H2O)2ZrP2W17O61}]·8.67H2O (2), in whose structure chiral polymeric chains {[(H2O)2M(P2W17O61)]}n6n are present. Under hydrothermal conditions the water molecules in [(H2O)3M(P2W17O61)]6− are replaced by l-malic acid with the formation of stable chiral polyoxoanions, isolated as (NH2Me2)8[M(L-ООССН(ОН)СН2СОО)P2W17O61]·7·9H2O (M = Zr, 3; M = Hf, 4). The structures of 1, 2 and 3 were determined; 3 and 4 were found to be isostructural. The products were also characterized by elemental analysis, thermogravimetry and IR-spectroscopy.  相似文献   

8.
Hua Jin 《Inorganica chimica acta》2007,360(10):3347-3353
Three new organic-inorganic hybrid compounds [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(2,2′-bipy)(4,4′-Hbipy)][CuI(4,4′-bipy)]2[P2W18O62] · 3H2O (1), [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(4,4′-bipy)]2[PW12O40] · 0.25H2O (2), and[CuI(4,4′-bipy)]3[PMo12O40] · en · 3H2O (3) (2,2′- bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. Compound 1 represents the first 1D ladderlike structure formed by Dawson-type polyoxoanion [P2W18O62]6− and coordination polymer with mixed 4,4′-bipy and 2,2′-bipy ligands. The novel structure of 2 is composed of 1D hybrid zigzag chains linked by chains into a 3D framework. In compound 3, the [PMo12O40]3− clusters are hung on chains to form a new 1D chain.  相似文献   

9.
The following Schiff bases were employed as ligands in synthesizing copper(II) and zinc(II) complexes: N-[(2-pyridyl)-methyl]-salicylimine (Hsalampy), N-[2-(N,N-dimethyl-amino)-ethyl]-salicylimine (Hsaldmen), and N-[(2-pyridyl)-methyl]-3-methoxy-salicylimine (Hvalampy). The first two ligands were obtained by reacting salicylaldehyde with 2-aminomethyl-pyridyne and N,N-dimethylethylene diamine, respectively, while the third one results from the condensation of 3-methoxysalicylaldehyde with 2-aminomethyl-pyridine. Four new coordination compounds were synthesized and structurally characterized: [Cu(salampy)(H2O)(ClO4)] 1, [Cu2(salampy)2(H2trim)2] 2 (H2trim? = the monoanion of the trimescic acid), [Cu4(valampy)4](ClO4)4 · 2CH3CN 3, and [Zn3(saldmen)3(OH)](ClO4)2 · 0.25H2O 4. The crystal structure of 1 consists of supramolecular dimers resulted from hydrogen bond interactions established between mononuclear [Cu(salampy)(H2O)(ClO4)] complexes. Compound 2 is a binuclear complex with the copper ions connected by two monoatomic carboxylato bridges arising from two molecules of monodeprotonated trimesic acid. The crystal structure of 3 consists of tetranuclear cations with a heterocubane {Cu4O4} core, and perchlorate ions. Compound 4 is a trinuclear complex with a defective heterocubane structure. The magnetic properties of complexes 13 have been investigated. Compound 4 exhibits solid-state photoluminescence at room temperature.  相似文献   

10.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

11.
Four octamolybdate-based compounds, that is, CuII2(L1)4(Mo8O26) (1), CuII2(HL2)4(Mo8O26)2 (2), [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (3) and [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (4) (L1 = 2-(2-pyridyl)imidazole, L2 = 2-(1-(pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine), have been hydrothermally synthesized via changing the reaction conditions and structurally characterized by single-crystal X-ray diffraction. With L1 ligand, we obtained compound 1, which is a 0D molecule and extends to a 3D supramolecular structure via hydrogen-bonding interactions. By using L2 instead of L1 ligand, compound 2 comes into being which is as well a discrete molecule and further extended to a 3D supramolecular structure by hydrogen bonds. Intriguingly, compounds 3 and 4 are supramolecular isomers: the former is a 2D 4-connected network and the latter is a 3D (3,4)-connected framework. The measurements of diffuse reflectance for compounds 1-4 indicate that they are potential wide gap semiconductors.  相似文献   

12.
Reaction of the potassium salts of (EtO)2P(O)CH2C6H4-4-(NHC(S)NHP(S)(OiPr)2) (HLI), (CH2NHC(S)NHP(S)(OiPr)2)2 (H2LII) or cyclam(C(S)NHP(S)(OiPr)2)4 (H4LIII) with [Cu(PPh3)3I] or a mixture of CuI and Ph2P(CH2)1-3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Cu(PPh3)LI] (1), [Cu2(Ph2PCH2PPh2)2LII] (2), [Cu{Ph2P(CH2)2PPh2}LI] (3), [Cu{Ph2P(CH2)3PPh2}LI] (4), [Cu{Ph2P(C5H4FeC5H4)PPh2}LI] (5), [Cu2(PPh3)2LII] (6), [Cu2(Ph2PCH2PPh2)LII] (7), [Cu2{Ph2P(CH2)2PPh2}2LII] (8), [Cu2{Ph2P(CH2)3PPh2}2LII] (9), [Cu2{Ph2P(C5H4FeC5H4)PPh2}2LII] (10), [Cu8(Ph2PCH2PPh2)8LIIII4] (11), [Cu4{Ph2P(CH2)2PPh2}4LIII] (12), [Cu4{Ph2P(CH2)3PPh2}4LIII] (13) or [Cu4{Ph2P(C5H4FeC5H4)PPh2}4LIII] (14) complexes. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy; their compositions were examined by microanalysis. The luminescent properties of the complexes 1-14 in the solid state are reported.  相似文献   

13.
Under hydrothermal condition, two novel organic-inorganic hybrid compounds, [Cu(bpp)][Cu2.5(bpp)3(Hbpp)]H0.5[BW12O40]·1.5H2O (1) and [Cu(en)2(H2O)]{[Cu(bpp)]3[AlW12O40]}·H2O (2) (bpp = 1,3-bis(4-pyridyl)propane; en = ethylenediamine), have been synthesized based on B/Al atom-centered Keggin-type polyoxometalates combined with Cu ions and bpp ligands. The two compounds are characterized through single-crystal X-ray diffraction analysis, elemental analyse, IR, UV and TG. For compound 1, as the nodes, the [BW12O40]5− polyanions link to the [Cu2.5(bpp)3(Hbpp)]3.5+ oligomers, leading to the formation of 1D helical chains which further attach to the macrocycles [Cu2(bpp)2]2+ via the Cu-O weak interaction to construct the 2D “wave-like” layers. For compound 2, the {[Cu(bpp)]4[AlW12O40]2} unit is obtained by the interaction between two Keggin-type [AlW12O40]5− polyanions and one tetranuclear macrocycle composed by four [Cu(bpp)]+ complex cations. Furthermore, the units are sandwiched by two 1D “wave-like” polymeric chains resulting in a new 1D structure. In addition, the electrochemical properties and electrocatalytic activities of these two compounds have been studied in this paper.  相似文献   

14.
Three novel hexa-transition-metal complexes substituted tungstoarsenates, [Ni6(imi)6(B-α-H3AsW9O33)2]·2H2O (1), [Zn6(imi)6(B-α-H3AsW9O33)2]·2H2O (2) and [Mn6(imi)6(B-α-H3AsW9O33)2]·4H2O (3) (imi = imidazole), have been synthesized hydrothermally without using any polyoxoanion as precursor and characterized by elemental analyses, IR, TG and X-ray single-crystal diffraction. Compounds 1-3 are isostructural, composed of [B-α-H3AsW9O33]12− anions and [M6(imi)6]12+ complex cations (M = Ni, Zn and Mn), all M atoms are square pyramidal geometry, and held together to form hexagonal metallocycles by edge-sharing oxygen atoms. In compounds 2 and 3, [M6(imi)6(B-α-AsW9O33)2] (M = Zn, Mn) segments act as 12-connected nodes to form complicated 3D network via hydrogen-bonding interactions, respectively. Magnetic measurements for 1 show the presence of ferromagnetic interactions within the hexanuclear Ni2+ cations.  相似文献   

15.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

16.
The hydrothermal reaction of MoO3, [Cu(CH3CO2)2] · H2O, 2,2:6,2″-terpyridine (terpy), H2O3AsC6H5, H2O and H2SO4 yields aqua colored crystals of [{Cu(terpy)}2Mo12O34(O3AsC6H5)4] · 2.25H2O (1 · 2.25H2O). The two-dimensional structure of 1 is constructed from {Mo12O34(O3AsC6H5)4}4− clusters linked through {Cu(terpy)}2+ subunits. Each Cu(II) site exhibits {CuN3O2} coordination geometry and links two adjacent clusters. In turn, each cluster is associated with four Cu(II) sites through {MoO · Cu} interactions.  相似文献   

17.
The use of succinamic acid (H2sucm) in Cu(ClO4)2·6H2O/N,N′-donor [2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (dmbpy), 4,4′-bipyridine (4,4′-bpy)] reaction mixtures yielded compounds [Cu2(Hsucm)3(bpy)2](ClO4)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)(H2O)(bpy)](ClO4)2 (2), [Cu4(Hsucm)5(dmbpy)4]n(ClO4)3n·nH2O ·0.53nMeOH (3·nH2O·0.53nMeOH), [Cu2(Hsucm)2(dmbpy)2(H2O)2](ClO4)2·2H2O (4·2H2O), [Cu2(Hsucm)2(phen)2(H2O)2](ClO4)2·1.8MeOH (5·1.8MeOH), [Cu2(Hsucm)2(phen)2(MeOH)2](ClO4)2·MeOH (6·MeOH) and [Cu(Hsucm)2(H2O)(4,4′-bpy)]n (7). The succinamate(−1) ligand exists in five different coordination modes in the structures of 1-7, i.e. the common syn, syn μ2OO′ in 1-6, the μ22O in 1, the μ22OO′ in 1, the μ32O2O′ in 3, and the monodentate κO in 7. The primary amide group of Hsucm remains uncoordinated and participates in intra- and intermolecular hydrogen bonding interactions leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of representative complexes was monitored by TG/DTG and DTA measurements.  相似文献   

18.
The influence of terminal ligands on the structure and nuclearity of copper(II)-pyrazolates has been investigated. Exchange of the chloride ligands of [Cu33-X)(μ-pz)3Cl3]n (X=O, OH; n=2, 1) or [Cu33-Cl)2(μ-pz)3Cl3]2− complexes for cyanate, acetate or bromide ligands maintains the integrity of the triangular species: PPN[Cu33-OH)(μ-pz)3(NCO)3], PPN[Cu33-OH)(μ-pz)3(O2CCH3)3(H2O)] · H2O, Bu4N[Cu33-OH)(μ-pz)3(O2CCH3)3] · 3H2O and (Bu4N)2[Cu33-Br)2(μ-pz)3Br3] have been prepared and characterized by spectroscopic and X-ray diffraction techniques, respectively. In contrast, tetranuclear complexes (Bu4N)2[Cu43-OH)2(μ-4-X-pz)2(μ-O2CPh)2(O2CPh)4] (X=H, Cl, Br, NO2) and the hexanuclear complex (Bu4N)2[Cu63-O)(μ3-OH)(μ-4-NO2-pz)6(μ-O2CPh)3(O2CPh)2(H2O)] · (CH2Cl2)0.5 have been obtained on substitution for benzoate ligands. An attempt to partially substitute the chlorides for tert-butoxide ligands, also provided a tetranuclear complex, (Bu4N)2[Cu4(μ-OH)2(μ-pz)4Cl4], without incorporation of the incoming ligand. Similarly, removal of all chloride ions in the absence of an appropriate substituting ligand leads to higher nuclearity metallacycles [Cu(μ-OH)(μ-pz)]n (n=6, 8, 9, 12, 14).  相似文献   

19.
The hydrothermal reactions of NH4VO3, Cu(NO3)2·H2O or Cu(CH3CO2)2·H2O As2O5 and the appropriate organonitrogen ligand in the presence of HF as mineralizer yield a series of bimetallic oxides of the Cu/V/O/As family. The materials [Cu(bpy)(VO2)(AsO4)] (1) and [Cu(bpy)VO2(OH)(AsO4H)]·H2O (2·H2O) are one-dimensional (bpy = 2,2′-bipyridine). While phase 1 is constructed from chains decorated by {Cu(bpy)}2+ groups, compound 2 consists of {V2O4(OH)2(AsO4H)2}2− clusters linked through {Cu(bpy)}2+ subunits. In contrast, the structure of [Cu2(bpyrm)(VO2)2(AsO4)2]·H2O (3·H2O) is three-dimensional, consisting of layers, linked through {Cu2(bpyrm)}4+ rods (bpyrm = bipyrimidine).  相似文献   

20.
Aiming at the use of vitamin B12 as a drug delivery carrier for cytotoxic agents, we have reacted vitamin B12 with trans-[PtCl(NH3)2(H2O)]+, [PtCl3(NH3)] and [PtCl4]2−. These Pt(II) precursors coordinated directly to the Co(III)-bound cyanide, giving the conjugates [{Co}–CN–{trans-PtCl(NH3)2}]+ (5), [{Co}–CN–{trans-PtCl2(NH3)}] (6), [{Co}–CN–{cis-PtCl2(NH3)}] (7) and [{Co}–CN–{PtCl3}] (8) in good yields. Spectroscopic analyses for all compounds and X-ray structure elucidation for 5 and 7 confirmed their authenticity and the presence of the central “Co–CN–Pt” motif. Applicability of these heterodinuclear conjugates depends primarily on serum stability. Whereas 6 and 8 transmetallated rapidly to bovine serum albumin proteins, compounds 5 and 7 were reasonably stable. Around 20% of cyanocobalamin could be detected after 48 h, while the remaining 80% was still the respective vitamin B12 conjugates. Release of the platinum complexes from vitamin B12 is driven by intracellular reduction of Co(III) to Co(II) to Co(I) and subsequent adenosylation by the adenosyltransferase CobA. Despite bearing a rather large metal complex on the β-axial position, the cobamides in 5 and 7 are recognized by the corrinoid adenosyltransferase enzyme that catalyzes the formation of the organometallic C–Co bond present in adenosylcobalamin after release of the Pt(II) complexes. Thus, vitamin B12 can potentially be used for delivering metal-containing compounds into cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号