首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A good correlation between the expression of mucin1 (MUC1) and T antigen was found in breast cancer tumors and breast cancer cell lines, especially after treatment with neuraminidase. The association between the appearance of T antigen and the overexpression of MUC1 was further confirmed by transfecting MDA-MB-231 cells and murine 4T1 mammary carcinoma cells with cDNA for MUC1 and using an RNAi approach to inhibit the expression of MUC1 gene in T47D cells. Furthermore, we discovered that in 4T1 cells which express the sialyl Le(X) antigen, overexpression of MUC1 caused not only appearance of T antigen, but also loss of the sialyl Le(X) structure. As the observed changes in O-glycan synthesis can be associated with changes in the expression of specific glycosyltransferases, core 1 β1,3-galactosyltransferase, core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT1) and β-galactoside α2,3-sialyltransferase (ST3Gal I), we studied their expression in parental, vector-transfected and MUC1-transfected MDA-MB-231 and 4T1 cells as well as T47D cells transduced with small hairpin RNA targeted MUC1 mRNA. It was found that the expression of C2GnT1 and ST3Gal I is highly decreased in MUC1-expressing MDA-MB-231 and 4T1 cells and increased in T47D cells with suppressed expression of MUC1. Therefore, we found that changes in the structure of O-linked oligosaccharides, resulting in the occurrence of T antigen, are at least partially associated with MUC1 overexpression which down-regulates the expression of C2GnT1 and ST3Gal I. We showed also that the overexpression of MUC1 in 4T1 cells changes their adhesive properties, as MUC1-expressing cells do not adhere to E-selectin, but bind galectin-3.  相似文献   

2.
The spontaneous hydrolysis of glycosylamines, where the aglycone is either a primary amine or ammonia, is over a hundred million-times faster than that of O- or S-glycosides. The reason for this (as pointed out by Capon and Connett in 1965) is that, in contrast to the mechanism for O- or S-glycoside hydrolysis, hydrolysis of these N-glycosides (e.g., glc-NHR) involves an endocyclic C-O bond cleavage resulting in formation of an imine (iminium ion) which then reacts with water. Since ring-opening is kinetically favored with glycosylamines, compounds such as phenylglucosylamine can be a useful probes of enzymes that have been suggested to possibly follow this mechanism. With β-glucosidase from sweet almonds, the enzyme is highly efficient in catalyzing the hydrolysis of phenyl glucoside (kcat/knon ∼ 1014) and phenyl thioglucoside (kcat/knon ∼ 1010) while with either the almond or the Aspergillus niger enzyme or with yeast α-glucosidase, there is no detectable catalysis of phenylglucosylamine hydrolysis (kcat/knon < 20). These results are consistent with the generally accepted mechanism involving exocyclic bond cleavage by these enzymes.  相似文献   

3.
The high-molar mass from of β-glucosidase fromAspergillus niger strain NIAB280 was purified to homogeneity with a 46-fold increase in purification by a combination of ammonium sulfate precipitation, hydrophobic interaction, ion-exchange and gel-filtration chromatography. The native and subunit molar mass was 330 and 110 kDa, respectively. The pH and temperature optima were 4.6–5.3 and 70°C, respectively. TheK m andk cat for 4-nitrophenyl β-d-glucopyranoside at 40°C and pH 5 were 1.11 mmol/L and 4000/min, respectively. The enzyme was activated by low and inhibited by high concentrations of NaCl. Ammonium sulfate inhibited the enzyme. Thermolysin periodically inhibited and activated the enzyme during the course of reaction and after 150 min of proteinase treatment only 10% activity was lost with concomitant degradation of the enzyme into ten low-molar-mass active bands. When subjected to 0–9 mol/L transverse urea-gradient-PAGE for 105 min at 12°C, the nonpurified β-glucosidase showed two major bands which denatured at 4 and 8 mol/L urea, respectively, with half-lives of 73 min.  相似文献   

4.
5.
Amyloid beta (Aβ) is a major causative agent of Alzheimer disease (AD). This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of β-secretase and γ-secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial AD and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between AD and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.Key words: Alzheimer disease, amyloid β, apoptosis, 37 kDa/67 kDa laminin receptor, prion proteinsAlzheimer disease (AD), primarily defined by psychiatrist Alois Alzheimer in 1906, is a neurodegenerative disorder and currently exhibits a prevalence that “doubles approximately every five years from 0.5% at the common age of onset-65 years old.”1 This disease is the most common form of dementia afflicting the elderly and at present affects in excess of 37 million people globally2 and it is predicted that 100 million people will be living with the disease by 2050.3AD has received mounting scientific interest and has stimulated tireless research endeavours not only due to the complex mechanism by which it is caused; the multitude of contributing factors and contradictions which have arisen between hypotheses and acquired results, but also due to the rise in life expectancies4 owing to the advent of modern medicine, which has socio-economic implications particularly in terms of strain placed upon national health systems.  相似文献   

6.
The beta2-adrenergic receptor (β2AR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound β2AR in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, β2AR is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of β2AR. In this review, structural features of inactive and active states of β2AR, the interaction of β2AR with heterotrimeric G protein, and the comparison with β1AR will be discussed.  相似文献   

7.
8.
1. β-Amylase obtained by acidic extraction of soya-bean flour was purified by ammonium sulphate precipitation, followed by chromatography on calcium phosphate, diethylaminoethylcellulose, Sephadex G-25 and carboxymethylcellulose. 2. The homogeneity of the pure enzyme was established by criteria such as ultracentrifugation and electrophoresis on paper and in polyacrylamide gel. 3. The pure enzyme had a nitrogen content of 16·3%, its extinction coefficient, E1%1cm., at 280mμ was 17·3 and its specific activity/mg. of enzyme was 880 amylase units. 4. The molecular weight of the pure enzyme was determined as 61700 and its isoelectric point was pH5·85. 5. Preliminary examinations indicated that glutamic acid formed the N-terminus and glycine the C-terminus. 6. The amino acid content of the pure enzyme was established, one molecule consisting of 617 amino acid residues. 7. The pH optimum for pure soya-bean β-amylase is in the range 5–6. Pretreatment of the enzyme at pH3–5 decreases enzyme activity, whereas at pH6–9 it is not affected.  相似文献   

9.
The effect of 5 mol%, 9 mol%, and 16 mol% of C24:1 β-glucosylceramide (βGlcCer) on the structure of cationic DODAB bilayers was investigated by means of differential scanning calorimetry (DSC), electron spin resonance (ESR) spectroscopy and fluorescence microscopy. βGlcCer is completely miscible with DODAB at all fractions tested, since no domains were observed in fluorescence microscopy or ESR spectra. The latter showed that βGlcCer destabilized the gel phase of DODAB bilayers by decreasing the gel phase packing. As a consequence, βGlcCer induced a decrease in the phase transition temperature and cooperativity of DODAB bilayers, as seen in DSC thermograms. ESR spectra also showed that βGlcCer induced an increase in DODAB fluid phase order and/or rigidity. Despite their different structures, a similar effect of loosening the gel phase packing and turning the fluid phase more rigid/organized has also been observed when low molar fractions of cholesterol were incorporated in DODAB bilayers. The structural characterization of mixed membranes made of cationic lipids and glucosylceramides may be important for developing novel immunotherapeutic tools such as vaccine adjuvants.  相似文献   

10.
-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3×105 and an optimal temperature of 55°C. The optimal pH at 30°C is 6.0 whereas at 55°C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2–5.6mm and with lactose is 50mm. The Ki for inhibition by galactose is 11.7–13.4mm and for dextrose is 50mm. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55°C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55°C. An overall purification of 75.3-fold was achieved.  相似文献   

11.
Alzheimer's beta-secretase (BACE1) cleaves amyloid precursor protein to produce amyloid beta-peptide, which is a crucial initiation process of the pathogenesis of Alzheimer's disease. We previously found that BACE1 also cleaves a membrane-bound sialyltransferase (ST6Gal I). Here we report that, when the protein A-ST6Gal I fusion protein, or ST6Gal I-derived peptide, was used as an in vitro substrate for BACE1, it cleaved the substrates between Leu(37) and Gln(38). However, a soluble form of ST6Gal I secreted from COS cells started from Glu(41), which was three amino acids shorter than the in vitro product. The results suggested that the BACE1 product was truncated by an aminopeptidase(s) before secretion. The aminopeptidase activity was successfully detected in detergent extracts of Golgi-membrane fraction. Taken together, we concluded that BACE1 initially cleaved ST6Gal I between Leu(37) and Gln(38), and the NH(2)-terminal three amino acids of the yielded product was further trimmed by the aminopeptidase.  相似文献   

12.
《朊病毒》2013,7(3):126-137
Amyloid β (Aβ) is a major causative agent of Alzheime disease. This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of beta secretase and gamma secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrPc) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial Alzheimer disease and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between Alzheimer disease and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.  相似文献   

13.
Human cystathionine β-synthase (CBS), a pivotal enzyme in the metabolism of homocysteine, is a pyridoxal-5′-phosphate-dependent enzyme that also contains heme, a second cofactor whose function is still unclear. One strategy for elucidation of heme function is its replacement with different metalloporphyrins or with porphyrins containing different substituent groups. This paper describes a novel expression approach and purification of cobalt CBS (CoCBS), which results in a high yield of fully active, high purity enzyme, in which heme is substituted by Co-protoporphyrin IX (CoPPIX). Metal content analysis showed that the enzyme contained 92% cobalt and 8% iron. CoCBS was indistinguishable from wild-type FeCBS in its activity, tetrameric oligomerization, PLP saturation and responsiveness to the allosteric activator, S-adenosyl-l-methionine. The observed biochemical and spectral characteristics of CoCBS provide further support for the suggestion that heme is involved in structural integrity and folding of this unusual enzyme.  相似文献   

14.
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.  相似文献   

15.
16.
Phosphoglucomutases catalyze the reversible conversion of D-glucose 1-phosphate to D-glucose 6-phosphate, a key metabolic step in all cells. Two classes of phosphoglucomutases have been described so far, using either the alpha- or beta-forms of the phosphorylated sugars. The pgcM gene of Bacillus subtilis was cloned and used to construct a plasmid-based overexpression system for PgcM in Bacillus megaterium. The obtained protein was purified and its enzymatic activities were characterized. PgcM exhibits beta-phosphoglucomutase activity, transforming mainly beta-glucose 1-phosphate to beta-glucose 6-phosphate via the intermediate glucose 1,6-bisphosphate. Nevertheless, alpha-glucose 1-phosphate can also serve as a substrate, but with a seven-fold lower affinity than that observed for the beta-form. Additionally, PgcM exhibits a glucose-1-phosphate phosphodismutase activity using the alpha- and beta-forms as substrates, with affinities comparable to those observed for the phosphoglucomutase activity. Conformational changes of PgcM triggered by cofactors (MgCl2, glucose 1,6-bisphosphate) and substrate (glucose 1-phosphate) were detected by fluorescence spectra. Insertional mutagenesis of pgcM resulted in an inactivation of beta-phosphoglucomutase activity in B. subtilis. These mutants showed growth deficiency on minimal medium containing starch or maltodextrins (maltose to maltoheptaose) compared either to the wild-type or to growth on minimal medium containing glucose.  相似文献   

17.
Water-soluble 2′-O-hydroxypropyltrimethylammoniumchitin chloride (2′-O-HTACCt) was prepared directly from β-chitin and 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) in basic medium. The effect of alkali concentration, reaction temperature, reaction time, and dosage of CTA on yield and degree of substitution (DS) of 2′-O-HTACCt were studied. These quaternized chitin derivatives were characterized by FTIR and 1H NMR spectroscopy, conductometric titration, and elemental analysis methods. Research results indicate that β-chitin can react directly with CTA to produce a water-soluble 2′-O-HTACCt derivative with a high DS. The optimal preparation conditions were determined to be 35-40 wt % (aq NaOH), 40 °C (reaction temperature), 6 h (reaction time), and 4 (molar ratio of CTA to β-chitin unit).  相似文献   

18.
Trichoderma reesei was studied for its ability to produce -mannanase activity on a variety of carbon sources. The highest -mannanase activity was produced on cellulose, whereas -mannan-containing carbon sources (such as kojac powder or locust bean gum) gave lower enzyme titres. The enzyme responsible for the major -mannanolytic activity from T. reesei was purified to physical homogeneity by preparative chromatofocusing and anion exchange fast protein liquid chromatography. This -mannanase is a glycoprotein, with a molecular mass of 46 (±2) kDa and an isoelectric point of 5.2. It has an optimal pH at 5.0 and broad pH stability (2.5–7.0). It is stable for 60 min at 55° C, and has an optimal temperature for activity at 75° C. During incubation with locust bean gum, the enzyme releases mainly tri- and disaccharides. Correspondence to: C. P. Kubicek  相似文献   

19.
20.
In Escherichia coli, the BAM complex catalyzes the essential process of assembling outer membrane proteins (OMPs). This complex consists of five proteins: one membrane-bound protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their importance in OMP biogenesis, there is currently a lack of functional and structural information on the BAM complex lipoproteins. BamE is the smallest but most conserved lipoprotein in the complex. The structural and dynamic properties of monomeric BamE (residues 21-133) were determined by NMR spectroscopy. The protein folds as two α-helices packed against a three-stranded antiparallel β-sheet. The N-terminal (Ser21-Thr39) and C-terminal (Pro108-Asn113) residues, as well as a β-hairpin loop (Val76-Gln89), are highly flexible on the subnanosecond time scale. BamE expressed and purified from E. coli also exists in a kinetically trapped dimeric state that has dramatically different NMR spectra, and hence structural features, relative to its monomeric form. The functional significance of the BamE dimer remains to be established. Structural comparison to proteins with a similar architecture suggests that BamE may play a role in mediating the association of the BAM complex or with the BAM complex substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号