首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tetranuclear copper(II) complex [Cu4(NSI)4] · 2C2H5OH · 2H2O (NSI=hydroxethylsalicydeneimine) has been synthesized and characterized by X-ray diffraction analysis. The compound crystallizes in the monoclinic system, space group P2(1), a=9.494(3) Å, b=18.687(5) Å, c=13.149(4) Å, β=110.162(5)°, Z=2, R1=0.0482 and wR2=0.0978. The crystal structure contains a tetranuclear pseudo-cubane core based on an approximately cubane array of alternating copper and oxygen atoms. Each copper atom resides in a distorted square planar coordination environment with one nitrogen and three oxygen atoms from two NSI ligands. The tetranuclear units are linked in the crystal by O-H?O hydrogen bonds and weak Cu?O co-ordination bonds into one-dimensional structure. Variable temperature (5-300 K) magnetic measurements indicate the existence of ferromagnetic interactions among copper atoms. The IR and ESR spectra have also been investigated.  相似文献   

2.
Yellow thallium(I)-tetra(2-butanethiolato)-thallium(III) Tl[Tl(SC4H9)4] (1) crystallizes from a solution of thallium(I) carbonate and 2-butanethiol in DMF after heating under reflux in air. In the crystal structure (space group: , a = 8.941(3) Å, b = 11.078(4) Å, c = 13.458(4) Å, α = 70.81(3)°, β = 83.65(3)°, γ = 74.78(3)°, Z = 2) regular, TlS4 tetrahedra are bridged by thallium(I) atoms to an one-dimensional framework. The thallium(I) atoms are in fivefold distorted coordination and are linked to four further TlS4 tetrahedra. The resulting Tl4(S-Bu)8 units consist of two face-sharing Tl3S4 defect cubane entities.TlSC3H7 (2) was obtained from a solution of thallium(I) carbonate and 2-propanethiol in DMF after heating under reflux in air. The crystal structure (space group C2/c, a = 22.501(5) Å, b = 10.360(2) Å, c = 12.760(3) Å, β = 107.92(2)°, Z = 16) contains novel [Tl4(SPr)5] units which are linked via thallium atoms to one-dimensional molecular chains running parallel to [0 0 1].  相似文献   

3.
The crystal structure of the title compound (C3H12N2)2Cu2Br6, is monoclinic, space group P21/n, with lattice constants a=8.222(2), b=11.214(2), c=10.646(2) Å, β=91.97(1)° and V=981.0(3) Å3. The structure contains anionic Cu2Br62− dimers and N-methylethylenediammonium (henceforth MEDA2+) cations. The centrosymmetric dimer units are composed of two edge-shared CuBr4 tetrahedra, with bridging Cu-Br distances 0.08 Å longer than the terminal distances. A pair of MEDA2+ cations hydrogen bond to each dimer via two of the -NH3+ hydrogen atoms and one of the -NH2+- hydrogen atoms. Additional hydrogen bonding between the cations and anions tie the structure together in a complex supramolecular network.  相似文献   

4.
Possibilities of the linear-polarized infrared (IR-LD) spectroscopy of oriented colloid suspensions in nematic liquid crystals, for structural and local structural elucidation for first time are demonstrated of inorganic compounds and glasses. The advantages of the method for tellurite and borate glasses are shown. The IR-band assignment of the typical local structural units in the glasses are proposed by a comparison with the IR-characteristics of appropriate crystalline analogues as α-TeO2, V2O5, MoO3 · H2O and its high temperature form. The IR-spectroscopic characteristics of BO3, BO4 and boroxol ring are elucidated, using crystalline β-BaB2O4, SrB4O7, H3BO3 and B2O3 as model systems, where the structural moieties have been refined by single crystal X-ray diffraction.  相似文献   

5.
The structures of (4-bipyH)2[(μ-4-bipy)Nd2(NO3)8(H2O)4]·3(4-bipy) (4-bipy = 4,4′-bipyridine; P21/c, a = 18.723(10), b = 10.720(6), c = 18.027(10) Å, β = 94.43(5)°, Z = 2; R = 0.066 for 4931 (diffractometer data) and of a second monoclinic form of [Ho(NO3)3(H2O)3]·2(4-bipy) (P21/c, a = 15.830(10), b = 21.44(3), c = 15.70(3) Å, β = 100.4(2)°, Z = 8; R = 0.091 for 2335 film data) are reported. In the first compound pairs of Nd atoms are bridged across a crystal inversion centre by a 4-bipy ligand, and 10-coordination is completed by one monodentate NO3, three bidentate NO3, and two H2O ligands, with bond lengths Nd---N 2.70, Nd---OH2(av.) 2.44, Nd---O(NO3, av.) 2.56 Å. The second compound has a variant of the previously-reported monoclinic [Y(NO3)3(H2O)3]·2(4-bipy) structure, with doubling of the unit cell on a but with essentially no change in the geometry and orientation of the nine-coordinate complex. In both compounds the non-coordinated, non-protonated 4-bipy N atoms form hydrogen bonds with ligand H2O.  相似文献   

6.
7.
The three-dimensional structure of the antigen-binding fragment of a monoclonal antibody to human interleukin-2 in a new crystal form (space group P212121; unit cell parameters: a = 42.82 Å, b = 90.68 Å, and c = 139.82 Å) was determined by the X-ray molecular replacement method at the resolution of 2.7 Å. The protein folding and the stereochemistry of its antigen-binding site were comparatively analyzed.  相似文献   

8.
Three kinds of crystalline compounds containing the nitrosylpentaamminechromium complexes [Cr(NO)(NH3)5]2+(A) were obtained: chloride ACl2 (red-orange), chloride perchlorate ACl(ClO4) (brown), and perchlorate A(ClO4)2 (green). The cause of the color change of the complex A with the change of outer sphere anions was sought using X-ray structural data of ACl2, ACl(ClO4), and A(ClO4)2. Crystal data: ACl2, orthorhombic, space group Cmcm, a=10.0236 (9) Å, b=9.098 (3) Å, c=10.357(1) Å, V=944.5 (5) Å3, Z=4; ACl(ClO4), tetragonal, space group P4/nmm, a=7.6986 (8) Å, c=9.9566(8) Å, V=590.1 (1) Å3,Z=2; A(ClO4)2, orthorhombic, space group Pnma, a=15.760 (2) Å, b=11.480(2) Å, c=7.920 (2) Å, V=1432.9 (4) Å3, Z=4. The complex cation in ACl2 has a distorted octahedral structure with a linear CrNO moiety. The short CrN (nitrosyl) distance of 1.692 (7) Å indicates the presence of multiple bonding between the chromium atom and the nitrogen atom in the nitrosyl group. The interatomic distances and angles within the complex cations hardly change with the change of the counter anions, while the distances between the complex cations in each crystal increase in the order ACl2<ACl(ClO4)<A(ClO4)2. The bulky perchlorate anions seems to separate the complex cations, while smaller chloride anions are not large enough to separate them. The distance (3.213(5) Å) between O(NO) and N(NH3 in the adjacent complex cation) is rather short in the crystal of ACl2, and there are six hydrogen bonds, where the NO group is surrounded by four NH3 ligands. The distance (4.002(5) Å) between O(NO) and N(NH3) is much longer in the crystal of A(ClO4)2, indicating the presence of no hydrogen bonding. In the crystal of ACl(ClO4) the distance (3.452(4) Å) between O(NO) and N(NH3) is in between those of ACl2 and A(ClO4)2. The presence of hydrogen bonding between O(NO) and N(NH3 in the adjacent complex cation) seems to cause the color change with the change of outer sphere anions.  相似文献   

9.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

10.
The hydrothermal reaction of MoO3, Na3VO4, 2,2′:6′,2″-terpyridine (terpy) and H2O in the mole ratio 1.53:1.00:1.30:1460 at pH 3 yields red crystals of [{VO(terpy)}MoO4] (1) in 55% yield. The structure of 1 is a one-dimensional chain of {VO(terpy)}2+ units bridged in the characteristic O,O′-mode by {MoO4}2− tetrahedra. Crystal data: C15H11N3O5MoV, orthorhombic, P212121, a=26.145(1) Å, b=6.7607(4) Å, c=9.2496(5) Å, V=1634.9(2) Å3, Z=2, Dcalc=1.869 g cm−3; structure solution and refinement converged at R1=0.0335 and wR2=0.0735.  相似文献   

11.
The hydrothermal reaction of NiCl2·6H2O, MoO3, 3,4′-bipyridine (3,4′-bpy) and H2O in the mole ratio 1.0:1.0:2.1:1500 yields [Ni(3,4′-bpy)2MoO4]·3H2O (1·3H2O) in 80% yield. The structure of 1·3H2O consists of a three-dimensional coordination polymer {Ni(3,4′-bpy)2}n2n+ with entrained {MoO4}2− tetrahedra and with water molecules of crystallization occupying channels within the bimetallic oxide-ligand framework. Crystal data: C20H16N4O4NiMo·3H2O (1·3H2O), tetragonal P41212, a=13.1866(5) Å, c=29.458(2) Å, V=5122.3(4) Å3, Z=8, Dcalc=1.532 g cm−3.  相似文献   

12.
Four new Co(II) coordination complexes, [Co(o-phta)(pz)2]n1, [Co(PTA)2(Imh)2]·(HPTA)·H2O 2, {[Co(pdc)2(H2O)]·(ppz)·2H2O}n3, [K2Co2(ox)(btec)(CH3OH)2]n4, (H2phta = o-phthalic acid, pz = pyrazole, HPTA = p-toluic acid, ppz = piperazine, Imh = imidazole, H2pdc = pyridine-2,5-dicarboxylic acid, H2(ox) = oxalic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid), were hydrothermally synthesized and characterized by X-ray single crystal diffraction, IR, UV–Vis absorption spectrum, TG analysis and elemental analysis. The surface photovoltage properties of the four Co(II) complexes were investigated by the surface photovoltage spectroscopy (SPS). The structural analyses indicate that complexes 1 and 3 are 1D coordination polymers and complex 2 is a mononuclear molecular complex. Complexes 1, 2 and 3 are connected into 2D supramolecules by hydrogen bonds, respectively. Complex 4 is a coordination polymer with 3D structure, exhibiting a 4-nodal(4,5,6,12)-connected topology with a Schläfli symbol of (410)2(424·632·810)(45·6)2(49·65·8). The results of SPS show the four complexes exhibit obvious photovoltaic responses in 300–800 nm, which indicates they all possess photo-electric conversion properties. By the comparative analysis of the SPS, it is found that structure of the complex, species of ligand and coordination micro-environment of the Co(II) ion affect the SPS. The relationships between SPS and UV–Vis absorption spectra are discussed.  相似文献   

13.
Xiao-Min Gong  Tal Lev  Chanoch Carmeli 《BBA》2009,1787(2):97-104
Photosystem I (PS I) mediates light-induced electron transfer from P700 through a chlorophyll a, a quinone and a [4Fe-4S] iron-sulfur cluster FX, located on the core subunits PsaA/B to iron-sulfur clusters FA/B on subunit PsaC. Structure function relations in the native and in the mutant (psaB-C565S/D566E) of the cysteine ligand of FX cluster were studied by X-ray absorption spectroscopy (EXAFS) and transient spectroscopy. The structure of FX was determined in PS I lacking clusters FA/B by interruption of the psaC2 gene of PS I in the cyanobacterium Synechocystis sp PCC 6803. PsaC-deficient mutant cells assembled the core subunits of PS I which mediated electron transfer mostly to the phylloquinone. EXAFS analysis of the iron resolved a [4Fe-4S] cluster in the native PsaC-deficient PS I. Each iron had 4 sulfur and 3 iron atoms in the first and second shells with average Fe-S and Fe-Fe distances of 2.27 Å and 2.69 Å, respectively. In the C565S/D566E serine mutant, one of the irons of the cluster was ligated to three oxygen atoms with Fe-O distance of 1.81 Å. The possibility that the structural changes induced an increase in the reorganization energy that consequently decreased the rate of electron transfer from the phylloquinone to FX is discussed.  相似文献   

14.
The crystal structure of the valinomycin analog, cyclo-[(-D -Val-Hyi-Val-D -Hyi-)3-] (meso-valinomycin, C60H102N6O18) has been determined by direct x-ray diffraction procedures. The crystals are triclinic, space group P1 , number of molecules per unit cell Z = 1, and cell parameters a = 11.831, b = 13.815, c = 14.889 Å, α = 109.54°, β = 116.10°, γ = 98.89°. The atomic coordinates for the C,N,O atoms were refined in the anisotropic thermal motion approximation and for the H atoms in the isotropic approximation to R = 0.07. The structure is centrosymmetric and has a threefold axis of pseudosymmetry. The depsipeptide chain is in the form of a bracelet stabilized by six identical intramolecular 4 → 1 hydrogen bonds between the amide C?O and NH groups. The ester carbonyls are oriented towards the symmetry axis, their O atoms forming an ellipsoidal molecular cavity. The isopropyl side chains are located on the molecular periphery. The structure found differs considerably from the conformation of the crystalline naturally occurring antibiotic, valinomycin, but completely resembles that of valinomycin and meso-valinomycin in nonpolar solvents. In the crystal, meso-valinomycin molecules form stacks. The molecular cavities situated in the stacks one above the other along the pseudo-C3 axis form a continuous channel, the internal surface of which is lined by O atoms. The possible conformations of depsipeptides of the valinomycin series and their mode of action in membranes are discussed in the light of the data obtained.  相似文献   

15.
We report herein the first crystal structures of (4-carboxy-1,3-thiazolidin-2-yl)pentitols [2-(polyhydroxyalkyl)thiazolidine-4-carboxylic acids], condensation products of l-cysteine with d-galactose and d-mannose: 2-(d-galacto-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Gal-Cys·H2O (1), and 2-(d-manno-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Man-Cys·H2O (2). In 1 and 2 the compounds crystallize as zwitterions, with the carboxylic groups deprotonated and the thiazolidine N atoms protonated. The sugar moiety and carboxylate group are in a cis configuration relative to the thiazolidinium ring, which adopts different conformation: twisted (T) on Cβ–S in 1, and S-puckered envelope (E) in 2. The carbon chain of the galactosyl/mannosyl moiety remains in an extended zig-zag conformation. The orientation of the sugar O2 atom with respect to the thiazolidinium S and N atoms is trans–gauche in 1 and gauche–gauche in 2. The molecular conformation is stabilized by the intramolecular N–H?OCys contacts in both 1 and 2 and by the additional N–H?OMan interaction in 2. The crystal packing of orthorhombic 1 and monoclinic 2 is determined mainly by N/O/C–H?O hydrogen bonds forming ribbons linked to each other by direct and water-mediated O/C–H?O/S contacts.  相似文献   

16.
Synthesis and characterisation of the new macrocyclic ligand 1,7-dimethyl-4,10-di(methylcarbamoylmethy)-1,4,7,10-tetraazacyclododecane (L) are reported. The ligand, based on cyclen (1,4,7,10-tetraazacyclododecane), has been functionalised by the insertion of two methyl groups and two amidic pendant arms linked to the amine nitrogens. The interaction of L with H+, Na(I), Ca(II), Cu(II), Zn(II), Pb(II), and Gd(III) ions has been studied by potentiometric titrations, microcalorimetric and 1H NMR measurements in 0.1 mol dm−3 Me4NCl aqueous solution at 298.1±0.1 K. The thermodynamic data suggest that the N4 moiety is the binding site for Cu(II) and Zn(II), while in the case of Pb(II) also the pendant arms are coordinated to the metal ion. The crystal structure of [PbL](ClO4)2 (space group P21/a, a=12.883(2) Å, b=12.259(3) Å, c=17.275(5) Å, β=108.65(2)°, V=2585.0(11) Å3, Z=4, R=0.0660, RW 2=0.1467) shows the metal ion hexa-coordinated by the four nitrogen atoms of the cyclic tetra-amine and by the two amidic oxygens of the pendant arms.  相似文献   

17.
The crystal structure as well as the microstructure, i.e., size and strain, of crystallites of cholesteryl oleyl carbonate was determined from X-ray powder diffraction data. The X-ray line broadening was analyzed through the refinement of TCH-pseudo-Voigt function parameters (isotropic effects) and the refinement of multipolar functions, i.e., symmetrized cubic harmonics (anisotropic effects). The crystal structure turns out to be primitive monoclinic, space group Pc, type I monolayer having two molecules per unit cell with parameters: a = 18.921 ± 0.006 Å, b = 12.952 ± 0.003 Å, c = 9.276 ± 0.002 Å and β = 91.32 ± 0.03°. The average size of a well ground specimen of crystallites was 60 nm. The average micro-strain, e.g., 45 × 10−4 has been tentatively attributed to fatty chain conformational disorder. The unit cell parameters, including the lamellar thickness, of COC crystal is very closely similar to those of another, structurally similar cholesterol ester, e.g., cholesteryl oleate (CO) crystal, space group P21, type II monolayer. Type I monolayer structure has been established for COC on the basis of the intensity calculations of the XRD profiles of both CO and COC. The dipolar and structural disorder in a 4:1 molar, binary mixture of CO and COC can be accommodated in an induced smectic phase with a lamellar thickness, which is nearly equal to that of pure CO or pure COC.  相似文献   

18.
A novel mixture cations templated indium phosphates, Li(C2N2H10)[In2(HPO4)3(PO4)], has been synthesized under mild hydrothermal conditions and characterized by elemental analysis and FT-IR spectrum. The crystal structure of title compound was determined by single crystal X-ray diffraction data. It belongs to monoclinic, space group P2/n with unit cell dimension a = 9.4692(13) Å, b = 9.1622(12) Å, c = 9.7063(14) Å, β = 117.5620(10)°. Its structure is characterized as a three-dimensional open-framework with 8-membered ring channels along a axis, where the inorganic lithium cation and organic double-protonated ethylenediamine cation are located and interact with the framework both electrostatically and via hydrogen bonds of N-H?O.  相似文献   

19.
The complex [Mn(L)(NO3)2(H2O)2] (1) (L=2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR and UV. The crystal and molecular structure of 1 was determined by single-crystal X-ray diffraction; crystal data: light yellow, monoclinic, space group P21/n, Z=4, a=7.432(2) Å, b=9.582(3) Å, c=23.445(7) Å, β=90.519(5)°. The Mn atom in 1 is hexa-coordinated in a distorted octahedral arrangement by two N atoms of the ligand L and four O atoms of two water molecules and two nitrate anions. Biological tests in vitro showed that 1 has significant antitumor activity against HL-60, KB, Hela and BGC-823 cells. The interaction of 1 with calf thymus DNA was investigated by absorption titration, thermal denaturation and viscosity measurements. The results suggest that 1 binds with DNA by intercalating via the ligand L.  相似文献   

20.
By varying the solvents and temperatures under solvothermal conditions, two new magnesium based coordination networks were synthesized using 2,5-thiophenedicarbxoylate as a linker. Mg3(TDC)3(DMF)3 [1; TDC = 2,5 thiophenedicarboxylate; space group P21/c, a = 17.747(4) Å, b = 9.805(2) Å, c = 21.359(4) Å, β = 103.13(3)°] is constructed by a combination of magnesium polyhedral trimers, which are connected by the TDC2− linkers to form a 3-D network. Coordinated DMF molecules are present within the channels. Mg(TDC)(H2O)2 [2; space group Pnma, a = 7.296(4) Å, b = 17.760(4) Å, c = 6.6631(3) Å] is formed by 1-D chains of magnesium octahedra connected by the TDC2− linker. Water molecules are coordinated at the axial positions of the magnesium octahedra. Compound 1 is formed using DMF as the synthesis solvent at 180 °C, while compound 2 is formed using ethanol as the synthesis solvent at 100 °C. Both compounds show enhanced photoluminescence intensity when excited at 397 nm compared to the free TDC ligand, suggesting a charge transfer between the ligand and the magnesium metal center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号