首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

2.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

3.
Shoots of cold-acclimated seedlings of Pinus sylvestris L. were exposed to a temperature of –7°C for 4 h, in darkness or at a photon flux density of 1 300 μmol m-2s-1. Before and after freezing, fluorescence kinetics of intact needles and isolated chloroplast membranes were measured at both room temperature and 77 K. Maximum and variable fluorescence yield of photosystem II both at room temperature and 77 K decreased strongly after freezing in light, whereas the initial fluorescence yield was little affected. Quenching of maximum and variable fluorescence of photosystem I at 77 K also occurred. The results show that freezing in light damages photosystem II, thereby increasing the radiationless decay at the reaction centres of photosystem II. This is a typical symptom of photoinhibition of photosynthesis. Freezing in darkness did not significantly reduce fluorescence yield of photosystem II or photosystem I. Moreover, electron transport capacity was not significantly affected. We therefore suggest that the inhibition of the CO2 assimilation in pine seedlings by freezing alone does not involve thylakoid inactivation.  相似文献   

4.
Photoinhibition in Lemna gibba L. was studied by interpreting chlorophyll fluorescence characteristics at 77 K on the basis of the bipartite model of Butler and co-workers (Butler 1978). Application of this analysis to chloroplasts (isolated from plants before and after exposure to a photosynthetic photon flux density of 1 750 μmol m−2 s−1 at 3°C for 2 h) revealed that photoinhibition had the following effect on primary events in photosynthesis. Firstly, the fluorescence of PS II increased (44%) in the state of open traps (Fo) and decreased (32%) in the state of closed traps (Fm). It is suggested, that the Fo-decrease reflects increased quenching by radiationless decay, both effects occurring at PS II reaction centers. Secondly, the rate constant for transfer of excitation energy from PS II to PS I (kT(μ→J)) increased by 34%. However, in the state of closed traps, the flux of excitation energy via this transfer process decreased, most likely because of increased quenching by radiationless decay at PS II reaction centers. Thirdly, the probability for fluorescence from PS I decreased (19%). This indicates increased quenching by radiationless decay.  相似文献   

5.
The relative roles of assimilatory and photorespiratory electron flows on one side and of the Mehler‐peroxidase pathway on the other side in sustaining electron transport and providing protection against photoinhibition were investigated in leaves of spinach ( Spinacia oleracea L.) and sunflower ( Helianthus annuus L.). After inhibiting photosynthesis and photorespiration of intact leaves by either HCN or glycolaldehyde, light‐dependent linear electron transport was decreased by more than 90% at a photon flux density of 800 µmol m−2 s−1. Remaining electron transport exhibited characteristics of the Mehler reaction. Nonphotochemical quenching of chlorophyll fluorescence increased after inhibition of CO2 assimilation and photorespiration indicating effective dissipation of excess excitation energy. Nevertheless, appreciable photoinactivation was observed under these conditions not only of photosystem II but also of photosystem I. This damage was oxygen‐dependent. It was much reduced or absent when the oxygen concentration of the atmosphere was reduced from 21 to 1%.  相似文献   

6.
Five winter and five spring wheat ( Triticum aestivum L.) cultivars were grown under either control conditions (20°C/250 photosynthetic photon flux density (PPFD) [μmol m−2 s−1]), high irradiance (20°C/800 PPFD) or at low temperature (either 5°C/250 PPFD or 5°C/50 PPFD). To eliminate any potential bias, the wheat cultivars were arbitrarily chosen without any previous knowledge of their freezing tolerance or photosynthetic competence. We show that the differential susceptibilities to photoinhibition exhibited between spring and winter wheat cultivars, as assessed by chlorophyll fluorescence cannot be explained on the basis of either growth irradiance or low growth temperature per se. The role of excitation pressure is discussed. We assessed the correlation between susceptibility to low-temperature photoinhibition, maximum ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) and NADP-dependent malate dehydrogenase (EC 1.1.1.82) activities, chlorophyll and protein concentrations and freezing tolerance determined by electrolyte leakage. Susceptibility to photoinhibition is the only parameter examined that is strongly and negatively correlated with freezing tolerance. We suggest that the assessment of susceptibility to photoinhibition may be a useful predictor of freezing tolerance and field survival of cereals.  相似文献   

7.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

8.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

9.
Leaf discs from spinach were exposed to a photon flux density of 1250 μmol m−2s−1 at 5°C for 2 or 3 h in ambient air. Photoinhibition of photosystem II (PS II) was measured by means of chlorophyll fluorescence. Recovery of photosystem II was followed at 6°C and 20°C in low light or darkness for periods up to 12 h.
The experimental setup allowed kinetic resolution of different phases of recovery. The experiments revealed a temperature dependent dark recovery phase and two distinct light- and temperature dependent phases: (1) A relatively fast, light dependent recovery phase occurred in parallel with partial recovery of basic fluorescence at 6°C and 20°C. A population of PS II centers with very slow fluorescence induction kinetics, which had accumulated during photoinhibition treatment, disappeared during this phase. This fast recovery phase is proposed to represent reactivation of photoinhibited PS II, without dissassembly or incorporation of new D1-protein. (2) A relatively slow light-dependent recovery phase took place at 20°C, but not at 6°C. In the presence of the chloroplast translation inhibitor streptomycin, part of the 2nd phase was inhibited. This phase is proposed to involve assembly of new Photosystem II centers, which is partly dependent on de novo synthesis of D1-reaction center protein, but presumably is also using a preexisting pool of D1-protein. Cold acclimation of the leaves resulted in a decreased sensitivity for photoinhibition of photosystem II. Recovery of photoinhibited photosystem II at 6°C of the cold-acclimated leaves was faster than in non-acclimated leaves, but this effect can be ascribed to diminished photoinhibitory damage.  相似文献   

10.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

11.
Photoinactivation of photosystem II (PSII) and energy dissipation at low leaf temperatures were investigated in leaves of glasshouse-grown grapevine ( Vitis vinifera L. cv. Riesling). At low temperatures (< 15°C), photosynthetic rates of CO2 assimilation were reduced. However, despite a significant increase in the amount of light excessive to that required by photosynthesis, grapevine leaves maintained high intrinsic quantum efficiencies of PSII ( F v/ F m) and were highly resistant to photoinactivation compared to other species. Non-photochemical energy dissipation involving xanthophylls and fast D1 repair were the main protective processes reducing the 'gross' rate of photoinactivation and the 'net' rate of photoinactivation, respectively. We developed an improved method of energy dissipation analysis that revealed up to 75% of absorbed light is dissipated thermally via pH- and xanthophyll-mediated non-photochemical quenching at low temperatures (5–15°C) and moderate (800 µmol quanta m−2 s−1) light. Up to 20% of the energy flux contributing to electron transport was dissipated via photorespiration when taking into account temperature-dependent mesophyll conductance; however, this flux used in photorespiration was only a relatively small amount of the total absorbed light energy. Photoreduction of O2 at photosystem I (PSI) and subsequent superoxide detoxification (water-water cycle) was more sensitive to inhibition by low temperature than photorespiration. Therefore the water-water cycle represents a negligibly small energy sink below 15°C, irrespective of mesophyll conductance.  相似文献   

12.
Spirulina (Arthrospira) platensis (Nordstedt) Geitler cells grown under mixotrophic conditions exhibit a modified response to light. The maximal photosynthetic rate and the light saturation value of mixotrophic cultures were higher than those of the photoautotrophic cultures. Dark respiration and light compensation point were also significantly higher in the mixotrophically grown cells. As expected, the mixotrophic cultures grew faster and achieved a higher biomass concentration than the photoautotrophic cultures. In contrast, the growth rate of the photoautotrophic cultures was more sensitive to light. The differences between the two cultures were also apparent in their responses to exposure to high photon flux density of 3000 μmol·m 2·s 1. The light-dependent O2 evolution rate and the maximal efficiency of photosystem II photochemistry declined more rapidly in photoautotrophically grown than in mixotrophically grown cells as a result of exposure to high photon flux density. Although both cultures recovered from the high photon flux density stress, the mixotrophic culture recovered faster and to a higher extent. Based on the above results, growth of S. platensis with a fixed carbon source has a significant effect on photosynthetic activity.  相似文献   

13.
Abstract: The C3/CAM intermediate species, C/usia parviflora Saldanha et EngI., and the obligate CAM species Clusia hilariana Schlecht., occur sympatrically in the coastal sand dune vegetation of the Restinga of Brazil. Their photosynthetic activity at an exposed and at a shaded site was compared by measuring gas exchange (porometry), chlorophyll a fluorescence parameters, organic acid levels (malic and citric) and carbon isotope ratios. At the shaded site, low photosynthetic photon flux densities (PPFD) strongly restricted photosynthetic activity. However, C parviflora could readily make use of light flecks. At the exposed site, C. parviflora was much less affected by photoinhibition than C. hilariana . The CAM species showed higher apparent rates of linear photosynthetic electron transport (ETR) and higher effective quantum yield of PSII (ΔF/F'm) than did C. parviflora during high insolation in the middle of the day, i.e., the time of Phase Ill of CAM. Nevertheless, it suffered much more severe acute photoinhibition that was not reversible after 20 min of darkening during this time, and even some chronic photoinhibition not reversible overnight. Comparative studies of sympatric physiotypes with different modes of photosynthesis of a given leaf morphotype, as available in the genus Cksia , challenge some CAM dogmas, e.g., CAM may not always be superior at exposed sites and may not always provide better photoprotection at high PPFD. However, the idea that C3/CAM plasticity allows occupation of a wider range of habitats is supported.  相似文献   

14.
Chilling in the light imposes a considerable level of stress on the photosynthetic apparatus, resulting in a decrease of photosystem II activity and the quenching of maximum and variable fluorescence. We selected in a fah - 1 mutagenized population of Arabidopsis thaliana , which permits a direct visible evaluation of the intensity of chlorophyll (Chl) fluorescence, a monogenic recessive nuclear mutant hypersensitive to photoinhibition induced by light and cold. The major phenotypic trait of the mutant is the appearance of chlorotic areas on developed leaves. Photochemical analyses indicate that the mutant is hypersensitive to photoinhibition in excess light in the cold but also at room temperature. The susceptibility to photoinhibition is a consequence of perturbations in photochemistry already present in unstressed plants. Such perturbations result in a greater fraction of the primary acceptor QA remaining in the reduced state even at low light fluxes. From estimates of the number of total and functional PSII units and measurements of PSII quantum yield and QA reoxidation kinetics, the basic lesion of the mutant seems restricted to PSII photochemistry likely affecting the rate of electron transport from QA to QB.  相似文献   

15.
Changes in the extent of P700 oxidation (P700+) were investigated after chilling of barley, rice, pumpkin, and cucumber leaf segments at 4°C for 1 h under light with various photon flux densities. At 50 µmol photons m−2 s−1, the decrease in P700+ was observed only in cucumber, but at 150 µmol photons m−2 s−1, it was found in all plants except barley, revealing their expected chilling sensitivities. However, the decrease in P700+ by this short-term chilling was reversible in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or methyl viologen, and it did not show any causal relationship with the decrease in the electron transfer rate nor with the down-regulation of photosystem II through the accumulation of zeaxanthin and the development of non-photochemical quenching. These results led to the suggestion that photosystem I (PSI) acceptor side limitation is a prerequisite for the decrease of P700+. Furthermore, PSI acceptor side limitation could be mainly due to limitation of electron-sink pathways such as CO2 assimilation and ascorbate–glutathione cycle, because treatment with glycolaldehyde which inhibits the former pathway, and with KCN which inhibits both pathways, decreased P700+ by 20–30% in barley leaves after chilling in the light.  相似文献   

16.
When maize ( Zea mays L. cv. LG11) leaves are exposed to low temperatures and high light modifications to both photosystem 2 (PS2) and the light-harvesting chlorophyll a/b protein complex associated with photosystem 2 (LHC2) occur. This study examines the consequences of these modifications for phosphorylation of LHC2 and PS2 polypeptides and the associated changes in electron transport. Maize leaves were chilled at 5°C for 6 h under photon flux densities of 1 500 and 250 μmol m-2 s-1. Thylakoids were then isolated from the leaves and their abilities to phosphorylate LHC2 and PS2 polypeptides and modify electron transport activities were determined. Measurements of chlorophyll fluorescence induction in the thylakoids were also made. Thylakoids isolated from leaves chilled under high light and from leaves kept in the ambient growth environment had similar phosphoprotein profiles. However, polypeptide phosphorylation in thylakoids from the chilled leaves did not produce a decrease in PS2 electron transport. Chilling leaves under low light produced a decrease in the ability of isolated thylakoids to phosphorylate PS2, but not LHC2, polypeptides, which was not associated with any change in the phosphorylation-induced decrease in PS2 electron transport. Chilling under high, but not low, light appears to produce changes in membrane organisation that do not affect the ability of the thylakoids to phosphorylate PS2 and LHC2 polypeptides, but which do prevent the phosphorylation-induced decrease in excitation energy transfer from LHC2 to PS2.  相似文献   

17.
Photosynthetic and respiratory response of four Alaskan tundra species comprising three growth forms were investigated in the laboratory using an infrared gas analysis system. Vaccinium vitis-idaea , a dwarf evergreen shrub, demonstrated a low photosynthetic capacity: Pmax= 1 mg CO2 g dry wt−1 h−1; Topt < 10°C. Betula nana , a deciduous shrub, had a high relatively photosynthetic capacity: Pmax= 14 mg CO2 g dry wt−1 h−1; Topt 17°C. Two graminoid (sedge) species, Carex aquatilis and Eriophorum vaginalum , showed different responses. Carex showed a high photosynthetic capacity: Pmax= 20 mg CO2 g dry wt−1 h−1; Topt 22°C. Eriophorum vaginatum demonstrated an intermediate photosynthetic capacity of 4 mg CO2 g dry wt−1 h−1 at saturated light levels. Leaf dark respiration, up to 20°C, was approximately the same for all species. The patterns of root respiration among species was opposite to the trend in photosynthesis. Vaccinium vitis-idaea had the highest rate of root respiration and B. nana the lowest ( C aquatilis was not measured). Correlation between leaf nitrogen content (%) and photosynthetic capacity was high. Hypothesized growth form relationships explained differences in photosynthetic capacity between the deciduous shrub and evergreen shrub, but did little to account for differences between the two sedges. Differences in rooting patterns between species may affect tissue nutrient content, carbon flux rates, and carbon balance.  相似文献   

18.
Six-month-old water cultures of Pinus radiataI D. Don seedlings showed optimal growth, and the highest CO2 assimilation and photosystem I-dependent ascorbate/dichlorophenolindophenol → NADP+ electron flow, at 3.0 uM Cu2+ (excess) in the hydroponic media. In the nine-month-old water cultures, when the early Cu deprivation has been overcome, the optimum for plant growth and CO2 fixation shifts to 0.3 u M Cu2+ (normal); at that time, the 3.0 uM Cu2+ water cultures showed toxic symptoms of foliar chlorosis. Under Cu2+ deficient levels (0.03 uM) a clear decrease in the photosystem I-linked electron transport and CO2 assimilation rates, as well as in the whole plant development, could be observed. Both six- and nine-month-old water cultures showed a close relationship between the Cu2+ concentration of the media and the foliar Cu content. However, leaf chlorophyll and the Cu content of thylakoid lamellae showed such a correlation only in the Cu2+ deficient and Cu2+ normal water cultures. The conclusion from these results is that the electron transport rate ascorbate/dicblorophenolindophenol → NADP+, and the Cu content of the photosynthetic membranes, can be used to diagnose a Cu deficiency in Pinus radiata plants.  相似文献   

19.
Gametophytes of Acrostichum aureum were cultured in 0.0 to 1.0% NaCl solutions or in NaCl‐free solution and then transferred to 1.0% NaCl solution. Photosynthetic light‐response curves, efficiency of the primary photochemical reaction, relative electron transport rate, and photochemical and non‐photochemical quenching at steady state were determined by photosynthetic O2 evolution and in vivo chlorophyll fluorescence. Results obtained showed that the chlorophyll fluorescence parameters, Fv/Fm and F'v/F'm and αO2 (the initial linear slope of the photosynthetic light‐response curve) increased in gametophytes grown in NaCl. Linear electron transport rate was stimulated by NaCl. Based on the chlorophyll content, light‐saturated photosynthesis in gametophytes grown in 0.2 to 0.7% NaCl increased slightly; it decreased in gametophytes grown in 1.0% NaCl. Photochemical quenching decreased in NaCl‐grown gametophytes at all photosynthetic photon flux density (PPFD) levels measured, but there was no increase in non‐photochemical quenching. The chlorophyll a/b ratio increased with increasing NaCl concentration in culture solutions. These results indicated that NaCl enhanced photochemical efficiency of photosystem II (PSII) and photosynthetic linear electron transport, thus resulting in the development of an excitation pressure in PSII. Such excitation pressure might act as a signal for photosynthetic acclimation to salt stress, thus allowing the gametophytes to grow in their natural habitats.  相似文献   

20.
A high-altitude ecotype of tomato ( Lycopersicon hirsutum f. typicum Humb. and Bonpl.) has previously been shown to resist further loss of photosynthetic function after three to four days of chilling stress. This study examined the influence of PPFD prior to, and during chilling on the development of protective zeaxanthin and energy-dependent quenching mechanisms in this ecotype. Five-week-old tomato plants were acclimated to either low PPFD (60 μmol m−2 s−1) or high PPFD (550 μmol m−2 S−1) at 25/20°C (day/night) for three days, and then exposed to a temperature of 5/5°C and a PPFD of either 60 or 550 μmol m−2 s−1 for three days. The plants acclimated to low PPFD had lower Chl a/b ratio, and lower level of total Chl per leaf area, total xanthophyll cycle pool and β-carotene. The capacity of their photosynthetic system to resist photoinhibition and to recover photosynthetic function was also lower compared to that of the plants acclimated at high PPFD but exposed to the same chilling stress. In the plants chilled at low PPFD, energy-dependent quenching preceded the formation of zeaxanthin on the first day of chilling and there was an overall reduction in the conversion of violaxanthin to zeaxanthin as compared to the plants chilled at high PPFD. During the last day of chilling-induced photoinhibition, energy-dependent quenching in any of the treatments did not increase, but zeaxanthin levels increased continuously throughout the three days of chilling. Our results suggest that light-acclimation before chilling affects the capacity of the plants to resist chilling-induced photoinhibition. In addition, photoinhibitory quenching appears to be a major component for quenching excessive energy at the latter stage of long-term chilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号