首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
 Although it is possible to transform wheat, broad application of the technology is limited because of the low overall efficiency and the lack of reliability of the technique. In addition there is little published data on transgene integration patterns and inheritance in wheat. We have generated a population of transgenic wheat and tritordeum lines under different auxin regimes and show that, under the conditions described, the presence of picloram results in higher transformation efficiencies than the presence of 2,4-D. Molecular analysis shows low-copy numbers and simple integration patterns to be prevalent in the transgenic lines. Mendelian inheritance of transgenes in T 1 progeny was observed for the majority of lines. Received: 2 December 1997 / Accepted: 12 March 1998  相似文献   

2.
 Wheat anonymous probes were selected for their efficiency for providing a readable hybridization pattern and revealing RFLP among wheat varieties. We report the mapping of 132 such probes (20 wheat-leaf cDNA, 28 wheat-root cDNA and 84 genomic DNA) on the reference population of the International Triticeae Mapping Initiative (ITMI) derived from the cross W-7984 with Opata85. Each probe has been characterized for its polymorphism information content. The 132 probes allowed us to map 160 loci. Received: 7 July 1998 / Accepted: 19 October 1998  相似文献   

3.
 A method for producing large numbers of transgenic wheat plants has been developed. With this approach, an average of 9.7% of immature embryo explants were transformed and generated multiple self-fertile, independently transformed plants. No untransformed plants, or escapes, were regenerated. This transformation procedure uses morphogenic calli derived from scutellum tissue of immature embryos of Triticum aestivum cv. Bobwhite co-bombarded with separate plasmids carrying a selectable marker gene (bar) and a gene of interest, respectively. Transformed wheat calli with a vigorous growth phenotype were obtained by extended culture on media containing 5.0 mg/l bialaphos. These calli retained morphogenic potential and were competent for plant regeneration for as long as 11 months. The bar gene and the gene of interest were co-expressed in T0 progeny plants. This wheat transformation protocol may facilitate quantitative production of multiple transgenic plants and significantly reduce the cost and labor otherwise required for screening out untransformed escapes. Received: 15 June 1998 / Revision received: 6 April 1999 / Accepted: 26 April 1999  相似文献   

4.
Extended physical maps of chromosomes 6A, 6B and 6D of common wheat (Triticum aestivum L. em Thell., 2n=6x=42, AABBDD) were constructed with 107 DNA clones and 45 homoeologous group-6 deletion lines. Two-hundred and ten RFLP loci were mapped, including three orthologous loci with each of 34 clones, two orthologous loci with each of 31 clones, one locus with 40 clones, two paralogous loci with one clone, and four loci, including three orthologs and one paralog, with one clone. Fifty five, 74 and 81 loci were mapped in 6A, 6B and 6D, respectively. The linear orders of the mapped orthologous loci in 6A, 6B and 6D appear to be identical and 65 loci were placed on a group-6 consensus physical map. Comparison of the consensus physical map with eight linkage maps of homoeologous group-6 chromosomes from six Triticeaespecies disclosed that the linear orders of the loci on the maps are largely, if not entirely, conserved. The relative distributions of loci on the physical and linkage maps differ markedly, however. On most of the linkage maps, the loci are either distributed relatively evenly or clustered around the centromere. In contrast, approximately 90% of the loci on the three physical maps are located either in the distal one-half or the distal two-thirds of the six chromosome arms and most of the loci are clustered in two or three segments in each chromosome. Received: 19 April 1999 / Accepted: 28 July 1999  相似文献   

5.
Two non-linked marker genes (gus and bar) were co-introduced by microprojectile bombardment into wheat cells. Four different DNA structures were compared with respect to ability to integrate into the wheat genome: circular or linear (l) DNA as a single- or double-stranded plasmid (ss and ds, respectively). In eight independent experiments, linearized DNA integrated in the ds or ss form with a high efficiency of up to 14% for l-ssDNA. Molecular analyses by Southern blotting showed that all DNA forms gave a similar complicated integration pattern of the bar gene. Received: 20 July 1998 / Accepted: 30 January 1999  相似文献   

6.
Transgene loci in 16 transgenic oat (Avena sativa L.) lines produced by microprojectile bombardment were characterized using phenotypic and genotypic segregation, Southern blot analysis, and fluorescence in situ hybridization (FISH). Twenty-five transgene loci were detected; 8 lines exhibited single transgene loci and 8 lines had 2 or 3 loci. Double FISH of the transgene and oat C- and A/D-genome-specific dispersed and clustered repeats showed no preferences in the distribution of transgene loci among the highly heterochromatic C genome and the A/D genomes of hexaploid oat, nor among chromosomes within the genomes. Transgene integration sites were detected at different locations along individual chromosomes, although the majority of transformants had transgenes integrated into subtelomeric and telomeric regions. Transgene integration sites exhibited different levels of structural complexity, ranging from simple integration structures of two apparently contiguous transgene copies to tightly linked clusters of multiple copies of transgenes interspersed with oat DNA. The size of the genomic interspersions observed in these transgene clusters was estimated from FISH results on prometaphase chromosomes to be megabases long, indicating that some transgene loci were significantly larger than previously determined by Southern blot analysis. Overall, 6 of the 25 transgene loci were associated with rearranged chromosomes. These results suggest that particle bombardment-mediated transgene integration may result from and cause chromosomal breakage and rearrangements. Received: 29 July 1999 / Accepted: 9 November 1999  相似文献   

7.
Candidate gene analysis of quantitative disease resistance in wheat   总被引:16,自引:0,他引:16  
 Knowledge of the biological significance underlying quantitative trait loci (QTLs) for disease resistance is generally limited. In recent years, advances in plant-microbe interactions and genome mapping have lead to an increased understanding of the genes involved in plant defense and quantitative disease resistance. Here, we report on the application of the candidate-gene approach to the mapping of QTLs for disease resistance in a population of wheat recombinant inbreds. Over 50 loci, representing several classes of defense response (DR) genes, were placed on an existing linkage map and the genome was surveyed for QTLs associated with resistance to several diseases including tan spot, leaf rust, Karnal bunt, and stem rust. Analysis revealed QTLs with large effects in regions of putative resistance (R) genes, as previously reported. Several candidate genes, including oxalate oxidase, peroxidase, superoxide dismutase, chitinase and thaumatin, mapped within previously identified resistance QTLs and explained a greater amount of the phenotypic variation. A cluster of closely linked DR genes on the long arm of chromosome 7B, which included genes for catalase, chitinase, thaumatins and an ion channel regulator, had major effects for resistance to leaf rust of adult plants under conditions of natural infestation. The results of this study indicate that many minor resistance QTLs may be from the action of DR genes, and that the candidate-gene approach can be an efficient method of QTL identification. Received: 12 June 1998 / Accepted: 24 July 1998  相似文献   

8.
A rapidly growing, long-term suspension culture derived from Triticum aestivum L. (wheat) was synchronized using hydroxyurea and colchicine, and a chromosome suspension with chromosomes was made. After staining with the DNA-specific fluorochromes Hoechst 33258 and Chromomycin univariate and bivariate flow-cytometry histograms showed 15 clearly resolved peaks corresponding to individual chromosome types or groups of chromosomes with similar DNA contents. The flow karyotype was closely similar to a histogram of DNA content measurements of Feulgen-stained chromosomes made by microdensitometry. We were able to show the stability of the flow karyotype of the cell line over a year, while a parallel subculture had a slightly different, stable, karyotype following different growth conditions. The data indicate that flow cytometric analysis of plant karyotypes enables accurate, statistically precise chromosome classification and karyotyping of cereals. There was little overlap between individual flow-histogram peaks, so the method is useful for flow sorting and the construction of chromosome specific-recombinant DNA libraries. Using bivariate analysis, the AT:GC ratio of all the chromosomes was remarkably similar, in striking contrast to mammalian flow karyotypes. We speculate about a fundamental difference in organization and homogenization of DNA sequences between chromosomes within mammalian and plant genomes. Received: 24 April 1996 / Accepted: 24 May 1996  相似文献   

9.
The transfer of the long T-DNA (T-DNA and non-T-DNA) of a binary plasmid from Agrobacterium into the rice genome was investigated at both molecular and genetic levels. Out of 226 independent transgenic plants, 33% of the transformants contained non-T-DNA sequences. There was no major difference in the frequency of non-T-DNA transfer among three Agrobacterium tumefaciens strains.Four T1 plants containing a single putative long T-DNA insertion were selected for Southern analysis. Three of them were confirmed to have a long T-DNA insertion with a size of greater-than-unit-length of the binary plasmid. This was further confirmed by rescuing the intact binary plasmid from these plants. Our results suggest that long T-DNA transfer by rolling-circle replication from Agrobacterium to rice occurs frequently, and that the high frequency of non-T-DNA transfer should be considered when producing transgenic rice for commercial production. Received: 22 April 1999 / Accepted: 22 June 1999  相似文献   

10.
 Following the induction of allosyndetic pairing between the Thinopyrum-derived Lr19 translocation in ‘Indis’ wheat and homoeologous wheat chromatin, eight suspected recombinants for the Lr19 region were recovered. These selections were characterised for marker loci that were previously used to construct a physical map of the Lr19 segment. At the same time near-isogenic lines were developed for some of the selected segments and tested for seedling leaf-rust resistance in order to confirm the presence of Lr19. It appeared that three of the four white-endosperm selections do not possess Lr19 and only one, 88M22-149, is a true Lr19 recombinant. The resistance gene in the three non-Lr19 selections resides on chromosome 6B, appears to derive from ‘Indis’, and was selected unintentionally during backcrossing. The pedigree of ‘Indis’ is suspect and it is believed that the Lr19 translocation in ‘Indis’ is in reality the Th. ponticum-derived (T4) segment rather than being of Th. distichum origin as was believed earlier. The white-endosperm recombinant, 88M22-149, retained the complete Lr19 resistance and was apparently re-located to chromosome arm 7BL in a double-crossover event. 88M22-149 has lost the Sd1 gene and often shows strong self-elimination in translocation heterozygotes. This effect may result from additional gametocidal loci or from an altered chromosome structure following re-location of the segment. 88M22-149 in fact contains a duplicated region involving the Wsp-B1 locus. Three selections had partially white endosperms and expressed Lr19 and other Thinopyrum marker alleles. Polymorphisms for the available markers confirmed that the translocated segment in at least one of them had been shortened through recombination with chromosome arm 7DL. Further markers need to be studied in order to determine whether the translocation in the remaining two partially white recombinants had also undergone recombination with wheat. The eighth selection has yellow endosperm and appears to self-eliminate in certain translocation heterozygotes. No evidence of recombination could be found with the markers used. If the latter selections are in fact recombinants they may prove useful in attempts to unravel the complex segregation distortion mechanism. Received: 8 August 1996 / Accepted: 10 January 1997  相似文献   

11.
A bacterial artificial chromosome (BAC) library was constructed from high-molecular-weight DNA isolated from young leaves of papaya (Carica papaya L.). This BAC library consists of 39168 clones from two separate ligation reactions. The average insert size of the library is 132 kb; 96.5% of the 18700 clones from the first ligation contained inserts that averaged 86 kb in size, 95.7% of the 20468 clones from the second ligation contained inserts that averaged 174 kb in size. Two sorghum chloroplast probes hybridized separately to the library and revealed a total of 504 chloroplast clones or 1.4% of the library. The entire BAC library was estimated to provide 13.7× papaya-genome equivalents, excluding the false-positive and chloroplast clones. High-density filters were made containing 94% or 36864 clones of the library with 12.7× papaya-genome equivalents. Eleven papaya-cDNA and ten Arabidopsis-cDNA probes detected an average of 22.8 BACs per probe in the library. Because of its relatively small genome (372 Mbp/1 C) and its ability to produce ripe fruit 9 to 15 months after planting, papaya shows promise as a model plant for studying genes that affect fruiting characters. A rapid approach to locating fruit-controlling genes will be to assemble a physical map based on BAC contigs to which ESTs have hybridized. A physical map of the papaya genome will significantly enhance our capacity to clone and manipulate genes of economic importance. Received: 11 April 2000 / Accepted: 28 July 2000  相似文献   

12.
13.
 Two mapping populations were used for the analysis of the water-extractable arabinoxylans. One originated from a cross between the hexaploid cultivars ‘Courtot’ and ‘Chinese Spring’ and the other from a cross between an amphiploid (Synthetic) and cv ‘Opata’. Arabinose (Ara), and xylose (Xyl) contents were quantified for the 91 and 76 lines obtained from the two crosses, respectively. Relative viscosity (ηrel) of the wheat flour aqueous extract was evaluated by capillary viscometry. Both crosses gave similar correlation coefficients between sugar contents and relative viscosity. There were strong positive relationships between arabinose, xylose and arabinoxylan contents. The relative viscosity was strongly and positively related to the arabinoxylan content and strongly and negatively related to the Ara/Xyl ratio (arabinose content to xylose content). For one of the two crosses two measurements of relative viscosity were generated from 2 years of consecutive harvesting. As a strong correlation was observed between these two measurements, an important genotypic effect can be deduced for the relative viscosity of water-extractable arabinoxylans. QTL (quantitative trait locus) research did not reveal any chromosomal segments that were strongly implicated in variations in sugar content. However, a QTL was found for relative viscosity values and the Ara/Xyl ratio on the long arm of the 1B chromosome for the two crosses considered. This QTL explained 32–37% of the variations in relative viscosity and 35–42% of the variations in the Ara/Xyl ratio. Genes located at this QTL controlled relative viscosity through modifying the Ara/Xyl ratio. Variations in the Ara/Xyl ratio were supposedly related to differences in the molecular structure of water-extractable arabinoxylans. Minor QTLs were also obtained for relative viscosity and Ara/Xyl ratio, but the chromosomes concerned were different for the two populations evaluated. Received: 5 January 1998 / Accepted: 15 May 1998  相似文献   

14.
 A large DNA fragment library consisting of 144 000 clones with an average insert size of 119 kb was constructed from nuclear DNA isolated from root and leaf tissue from Triticum tauschii (syn. Aegilops tauschii), the D-genome progenitor of wheat. The library was made in a binary vector that had previously been shown to stably maintain large inserts of foreign DNA in Escherichia coli. The use of root nuclei reduced considerably the proportion of the library containing clones derived from chloroplast DNA. Several experimental parameters were investigated and optimised, leading to a high cloning efficiency. Only three ligations were needed to construct the library which was estimated to be equivalent to 3.7 haploid genomes. The accuracy of this estimation was demonstrated by screening this library with three well-defined probes. One probe containing a glutenin gene sequence identified 5 clones covering at least 230 kb of the Glu-D1 locus and contained the two tightly linked high-molecular-weight glutenin genes Glu-D1x and -D1y. Each of the other two single-copy probes derived from the Cre3 cereal cyst nematode resistance gene locus hybridised with 4 clones containing gene sequences encoding nucleotide binding sites and a leucine-rich region. This is the first representative large-insert DNA library for wheat, and the results indicated that large molecules of wheat DNA can be efficiently cloned, stably maintained and manipulated in a bacterial system. Received: 28 August 1998 / Accepted: 28 November 1998  相似文献   

15.
Relationships between the chromosomes of Aegilops umbellulata and wheat   总被引:3,自引:0,他引:3  
 A comparative genetic map of Aegilops umbellulata with wheat was constructed using RFLP probes that detect homoeoloci previously mapped in hexaploid bread wheat. All seven Ae. umbellulata chromosomes display one or more rearrangements relative to wheat. These structural changes are consistent with the sub-terminal morphology of chromosomes 2 U, 3 U, 6 U and 7 U. Comparison of the chromosomal locations assigned by mapping and those obtained by hybridization to wheat/Ae. umbellulata single chromosome addition lines verified the composition of the added Ae. umbellulata chromosomes and indicated that no further cytological rearrangements had taken place during the production of the alien-wheat aneuploid lines. Relationships between Ae. umbellulata and wheat chromosomes were confirmed, based on homoeology of the centromeric regions, for 1 U, 2 U, 3 U, 5 U and 7 U. However, homoeology of the centromeric regions of 4 U with wheat group-6 chromosomes and of 6 U with wheat group-4 chromosomes was also confirmed, suggesting that a re-naming of these chromosomes may be pertinent. The consequences of the rearrangements of the Ae. umbellulata genome relative to wheat for gene introgression are discussed. Received: 10 July 1997 / Accepted: 19 September 1997  相似文献   

16.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

17.
The Russian wheat aphid (RWA), Diuraphis noxia Mordvilko, is a serious economic pest of wheat and barley in North America, South America, and South Africa. Using aphid-resistant cultivars has proven to be a viable tactic for RWA management. Several dominant resistance genes have been identified in wheat, Triticum aestivum, including Dn1 in PI 137739, Dn2 in PI 262660, and at least three resistance genes (Dn5+) in PI 294994. The identification of RWA-resistant genes and the development of resistant cultivars may be accelerated through the use of molecular markers. DNA of wheat from near-isogenic lines and segregating F2 populations was amplified with microsatellite primers via PCR. Results revealed that the locus for wheat microsatellite GWM111 (Xgwm111), located on wheat chromosome 7DS (short arm), is tightly linked to Dn1, Dn2 and Dn5, as well as Dnx in PI 220127. Segregation data indicate RWA resistance in wheat PI 220127 is also conferred by a single dominant resistance gene (Dnx). These results confirm that Dn1, Dn2 and Dn5 are tightly linked to each other, and provide new information about their location, being 7DS, near the centromere, instead of as previously reported on 7DL. Xgwm635 (near the distal end of 7DS) clearly marked the location of the previously suggested resistance gene in PI 294994, here designated as Dn8. Xgwm642 (located on 1DL) marked and identified another new gene Dn9, which is located in a defense gene-rich region of wheat chromosome 1DL. The locations of markers and the linked genes were confirmed by di-telosomic and nulli-tetrasomic analyses. Genetic linkage maps of the above RWA resistance genes and markers have been constructed for wheat chromosomes 1D and 7D. These markers will be useful in marker-assisted breeding for RWA-resistant wheat. Received: 17 May 2000 / Accepted: 13 June 2000  相似文献   

18.
 A cDNA clone that reveals a high level of polymorphism between wheat varieties was isolated from a wheat cDNA library. When hybridized to DraI-, EcoRV- and HindIII digested DNA this clone, gbx3832, enables us to distinguish 42 different patterns among 48 varieties: 37 varieties are clearly identified, the remaining 11 are divided into five groups. Base-sequence analysis of the clone reveals 72–74% sequence identity to mRNAs encoding thaumatin-like proteins from different cereals. Received: 27 January 1997 / Accepted: 18 April 1997  相似文献   

19.
 Homozygous deletion lines of wheat for 5AL, generated in the variety ‘Chinese Spring’, were tested for flowering time without vernalization and for frost resistance after cold hardening. It was found that the Vrn-A1 gene for vernalization requirement mapped between breakpoints 0.68 and 0.78, whilst the frost resistance gene Fr1 was flanked by deletion breakpoints 0.67 and 0.68. This confirms previous evidence that these genes are linked but are not the pleiotropic effect of a single gene. A comparison between the physical and genetic maps for Vrn-A1 and Fr1 shows that the linear order is identical. These results indicate that cytogenetically based physical maps of Vrn-A1 and Fr1 loci, together with genetic maps, could be useful in the further study of genome synteny and in elaborating a gene cloning strategy. Received: 16 November 1998 / Accepted: 28 November 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号