共查询到20条相似文献,搜索用时 15 毫秒
1.
Deoxyribonucleic acid in amphibian eggs 总被引:32,自引:0,他引:32
I B Dawid 《Journal of molecular biology》1965,12(3):581-599
2.
AntonioROMANO AnnaRitaDiCERBO 《动物学报》2007,53(4):750-754
许多卵生动物具有对付食卵者的精巧策略以降低死亡率,因为早期发育阶段的捕食压力能显著影响具复杂生活史动物的生存。两栖动物卵被水蛭等很多物种所捕食。我们查阅了水蛭捕食两栖类卵的文献,发现27篇论文。在所报道的水蛭捕食两栖类卵的例子中,无尾类(3.6%,n=591)明显多于有尾类(1.6%,n=255)。此外,我们第一次记录到水蛭捕食四趾螈(Salamandrina perspicillata)卵,这也是西欧有尾类的第一例报道。我们没有发现两个两栖动物类群间存在差异。然而,当我们分别分析来自北美、欧洲和亚洲三个地区的数据时,发现北美的有尾类和无尾类间存在显著差异。水蛭可捕食各生活史阶段的两栖动物,因此,水蛭应归为一些两栖类的天敌。 相似文献
3.
William Margolin 《Current opinion in microbiology》2001,4(6):647-652
Cytokinesis in bacteria such as Escherichia coli is orchestrated by FtsZ, a tubulin-like protein that forms a circumferential Z ring at the division site. The Z ring then recruits a number of other essential cell division proteins, ultimately assembling the cytokinetic machine that splits the cell. It has been known for some time that the MinCDE proteins and the bacterial nucleoid provide positional information to negatively regulate cytokinesis. Recently, direct visualization of Z rings and Min proteins in whole cells have contributed important new insights into the molecular mechanisms behind this fundamental cellular process. This review summarizes and integrates these insights. 相似文献
4.
R Rappaport 《The Journal of experimental zoology》1977,201(3):375-378
Tensions exerted by cleavage furrows of Echinarachnius parma were measured by means of calibrated, flexible glass needles. The tensions exerted by the first and second furrows in isometric contraction were, respectively, 1.58 X 10(-3) dyne (S.D. 0.41 X 10(-3) dyne) and 1.43 X 10(-3) dyne (S.D. 0.44 X 10(-3) dyne). The difference between the two means is not significant. The tensions exerted by the same cleavage furrow at two different lengths, of which the shorter was about 66% the length of the longer, were not significantly different. When the progress of a second cleavage furrow was mechanically blocked, it continued to exert maximum tension up to 9 minutes after its companion blastomere, which served as a time control, completed cleavage. 相似文献
5.
Cyclic ADP-ribose and the regulation of calcium-induced calcium release in eggs and cardiac myocytes
Antony Galione Yi Cui Ruth Empson Shigao Iino Heather Wilson Derek Terrar 《Cell biochemistry and biophysics》1998,28(1):19-30
Cyclic ADP-ribose (cADPR) is a cyclic metabolite of NAD+ synthesised in cells and tissues expressing ADP-ribosyl cyclases. Although it was first discovered in sea-urchin egg extracts as a potent calcium mobilizing agent, subsequent studies have indicated that it may have a widespread action in the activation of calcium-release channels in such diverse systems as mammalian neurones, myocytes, blood cells, eggs, and plant microsomes. In this review we focus on recent work suggesting that cADPR enhances the sensitivity of ryanodine-sensitive calcium-release channels (RyRs) to activation by calcium, a phenomenon termed calcium-induced calcium release (CICR). Two roles for cADPR in calcium signaling are discussed. The first is as a classical second messenger where its levels are controlled by extracellular stimuli, and the second mode of cellular regulation is that the levels of intracellular cADPR may set the sensitivity of RyRs to activation by an influx of calcium in excitable cells. These two possible actions of cADPR are illustrated by considering the signal transduction events during the fertilization of the sea-urchin egg and the modulation of CICR during excitation-coupling in isolated guinea-pig ventricular myocytes, respectively. 相似文献
6.
Recent advances are revealing quantitative aspects of cytokinesis. Further, genetic analyses and cell imaging are providing insights into the molecular dynamics of cleavage furrow ingression as well as further refining our knowledge of the zones of the mitotic spindle that regulate the contractile properties of the overlying cortex. Ultimately, however, cortical mechanics are the result of signals that emanate from the mitotic spindle. A genuine quantitative understanding of cytokinesis must include a thorough analysis of the mechanical properties of the cortex and how signals modify these properties to dictate a well-controlled, error-free cytokinesis. 相似文献
7.
8.
Slow calcium waves accompany cytokinesis in medaka fish eggs 总被引:11,自引:6,他引:5
Animal cells are cleaved by the formation and contraction of an extremely thin actomyosin band. In most cases this contractile band seems to form synchronously around the whole equator of the cleaving cell; however in giant cells it first forms near the mitotic apparatus and then slowly grows outwards over the cell. We studied the relationship of calcium to such contractile band growth using aequorin injected medaka fish eggs: we see two successive waves of faint luminescence moving along each of the first three cleavage furrows at approximately 0.5 micron/s. The first, narrower waves accompany furrow extension, while the second, broader ones, accompany the subsequent apposition or slow zipping together of the separating cells. If the first waves travel within the assembling contractile band, they would indicate local increases of free calcium to concentrations of about five to eight micromolar. This is the first report to visualize high free calcium within cleavage furrows. Moreover, this is also the first report to visualize slow (0.3-1.0 micron/s) as opposed to fast (10-100 microns/s) calcium waves. We suggest that these first waves are needed for furrow growth; that in part they further furrow growth by speeding actomyosin filament shortening, while such shortening in turn acts to mechanically release calcium and thus propagates these waves as well as furrow growth. We also suggest that the second waves act to induce the exocytosis which provides new furrow membrane. 相似文献
9.
Electropotential differences between the cytoplasm and external medium have been compared in the mature R. pipiens occyte and the ovulated unfertilized egg as a function of [Na]o, [K]o, [Ca]o and [Cl]o. In solutions containing 1.0 mM Ca++ the oocyte behaved as though it were predominantly permeable to K+ and Cl?, i.e., like a KCl electrode. However, the steady potential decreased with decreasing [Ca]o and in 5 × 10?4 mM [Ca]o the oocyte membrane behaved like a NaCl electrode. Studies on the steady potential as a function of [Na]o, [K]o and [Cl]o in 1.0 mM Ca++ or Ca-free solutions suggest that Ca++ controls the passive permeability of the oocyte membrane to Na+ and Cl?. In the ovulated unfertilized egg the K+ selectivity of the cell membrane disappeared and the system behaved like a NaCl electrode. No effect of external Ca++ or K+ concentration changes on the steady potential was observed. These results indicate that the ion permeability properties of the ovulated egg are similar to that of the ovarian oocyte in Ca-deficient medium, and suggests that the mechanism of ovulation may involve the removal of Ca++ regulation of ion permeability of the egg cell membrane. 相似文献
10.
The paper considers a number of abnormal phenotypes with impaired temporal regulation of cytokinesis during the meiotic division of pollen mother cells. The phenomenon of “non-stop” cytokinesis with blocked arrest of the phragmoplast centrifugal motion and cell plate growth as well as incomplete and premature cytokinesis are described. The obtained data suggested a model for regulation of the processes involved in the arrest of the main cytokinesis processes during its completion in the plant meiosis. 相似文献
11.
Water and electrolyte changes in amphibian eggs at ovulation 总被引:5,自引:0,他引:5
G A Morrill 《Experimental cell research》1965,40(3):664-667
12.
Summary Concentrations of the cyclic nucleotides in regenerating limb tissues change in a manner which suggests that they might mediate neural or endocrine influences upon specific developmental events. Since modulation of the role of cAMP within this process can be achieved through cAMP phosphodiesterase, enzymatic activity, relative intracellular distribution, and the kinetic parameters of this enzyme were examined at several stages of limb regeneration in adultNotophthalmus viridescens. Both forms of the phosphodiesterase displayed decreased activity about the time of bud formation. Total phosphodiesterase activity was reduced between 66% and 85% (as compared to intact limbs) between wound healing and palette stages. Relative intracellular distribution (soluble vs. particulate), however, remained essentially constant, 93%–98% soluble for the highK
m form and 61%–71% soluble for the lowK
m form of the enzyme, throughout this process. The apparentK
m of the highK
m form increased more than 2-fold during wound healing then fell to approximately 10% (0.7–1.1 M) of the value of intact limbs (8.3 M) during dedifferentiation and bud formation. A return to pre-amputational levels was subsequently achieved. In contrast, the apparentK
m of the lowK
m form increased (from 0.064 to 0.86 M) during dedifferentiation and began decreasing thereafter. These results are consistent with the hypothesis that one or more mechanisms are operating to modify either the quantity, activity, or physical characteristics of the cAMP phosphodiesterases and that such changes are instrumental in regulating endogenous concentrations of cAMP in limb tissues during regeneration. 相似文献
13.
Summary The hypothesis that cAMP mediates neural and endocrine influences on limb regeneration was examined by studying the protein kinases in regenerating limb tissues. Since these enzymes are the vehicles through which cAMP acts intracellularly, an understanding of changes in their concentrations and behaviors during regeneration can be instrumental in elucidating the role of cAMP in this process. Mean activities oscillated throughout regeneration with maximal activities being observed during the mid-late bud stage. The phosphorylation of histone, added to the assay, varied with the stage of regeneration-greatest activity occurring during the early bud stage and very weak activity during the palette and early digital stages. Histone actually appeared to inhibit endogenous phosphorylation during dedifferentiation. In addition, cAMP demonstrated different degrees of enhancement of histone phosphorylation during regeneration-producing its greatest effect at the palette stage and having the least effect at the early bud stage. The results of this study suggest that changes in the absolute amounts of protein kinase are probably not significant in the regulation of regeneration. In addition, the variable acceptability of histone as an exogenous substrate and the variations in the cAMP effects on phosphorylation suggest that physiological changes are occurring in which cAMP might play a significant role. In particular, these data suggest that cAMP might be instrumental in influencing events associated with differentiation and morphogenesis.Portions of this work constitute part of the thesis submitted by T.M.L. in partial fulfillment of the requirements for the M.S. degree in Biology at Boston College 相似文献
14.
15.
Conflicting results have been published concerning the effects of cyclic nucleotides on amphibian cell differentiation. Here we report the effects of cyclic adenosine monophosphate (cAMP) and dibutyryl-cyclic adenosine monophosphate (db-cAMP) on isolated explants from late blastulae of Ambystoma mexicanum and Xenopus laevis. Both cAMP and db-cAMP (10(-4)-10(-9) M) promote 'neuralizing' differentiation in Ambystoma explants. Xenopus explants treated with the nucleotides (10(-4), 10(-6), 10(-8) M) LiCl or heparan sulphate only give rise to ciliated aggregates or dissociation. The results confirm observations that different amphibian species react in different ways to activating chemicals. 相似文献
16.
17.
18.
Completion of cytokinesis, abscission, has been studied little despite the intensive studies of the onset and contractile mechanism of the earlier phases of division. It has been well documented that microtubule (MT) disruption before furrow stimulation prevents furrowing, while MT disruption after furrow stimulation allows division to proceed. We have confirmed those findings using the MT inhibitors, nocodazole and demecolcine. In addition, we have found that MT disruption after furrow stimulation but before completion of division prevents abscission as evidenced by the observation that prospective daughter cells in MT-disrupted eggs maintain electrical continuity. Continued observation of eggs revealed that the furrow in MT-disrupted eggs did not result in abscission, but rather held steady until the time when controls underwent second cleavage, at which point the furrows regressed. These findings extend the recent reports that MTs are required for completion of division in mammalian tissue culture cells and frog eggs, to invertebrates, suggesting a common mechanism of abscission for animal cells. 相似文献
19.
Beckhelling C Pérez-Mongiovi D Houliston E 《Biology of the cell / under the auspices of the European Cell Biology Organization》2000,92(3-4):245-253
In this review we discuss the evidence that activation and inactivation of M-phase promoting factor (MPF), the universal mitotic activator, are regulated locally within the cell, and consider the mechanisms that might be responsible. Localised initiation of MPF activation has been demonstrated in Xenopus eggs and egg fragments by examination of the timing of surface contraction waves (SCWs), indicators of MPF activity, and confirmed by direct measurement of MPF in such fragments. Both the timing and the site of SCW initiation relate to the presence of nuclei and of associated centriole-nucleated microtubules. Localised MPF activation is likely to occur in the perinuclear cytoplasm as well as within the nucleus. Studies in a number of cell types show that the perinuclear/centrosomal region is the site of accumulation of MPF itself (the cyclin B-Cdc2 kinase complex) and of many of its molecular regulators. It also harbours calcium-regulating machinery, and in sea urchin eggs is the site of transient calcium release at the onset of mitosis. During mitosis MPF, regulatory molecules and calcium signalling components associate with spindle structures. Inactivation of MPF to end mitosis has been shown to be initiated locally at the mitoic spindle in Drosophila embryos. In sea urchin and frog eggs, calcium transients are required for both mitotic entry and exit and in mouse eggs, MPF inactivation requires both a calcium signal and an intact spindle. It thus appears that calcium signals coinciding with localised accumulation of MPF regulators are required first to set off and/or amplify the MPF activation process around the nucleus, and later to promote MPF inactivation via cyclin B destruction. Calcium release from sequestering machinery organised around nuclear and astral structures may act co-operatively with localised MPF regulatory molecules to trigger both mitotic entry and exit. 相似文献