首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excretion of cytokinins into the cultivating medium, which are produced by the phytopathogenic fungiMonilia sp. andCytospora sp. has been investigated. All the isolates of the fungi used in the experiments (Monilia fructicola, Monilia fructigena, isolate 2 and 4,Monilia laxa isolate 3 andCytospora sp. isolate CPL and C1) have been found to produce cytokinins. The production is increased during the formation of the fructification organs. Among the isolates investigatedMonilia fructigena isolate 4 andCytospora sp. isolate CPL showed the highest production of cytokinins. After chromatographic separation, cytokinin activity was found at RF 0.7–0.8 values by the biological test as well as by identification according to UV spectra. Application of purified cytokinins produced by the fungi evoked the formation of “green islands” on isolated barley leaves underin vitro conditions.  相似文献   

2.
Palni LM  Tay SA  Macleod JK 《Plant physiology》1987,84(4):1158-1165
In this study gas chromatographic-mass spectrometric techniques have been used to identify and quantify the metabolic incorporation of [15N5]adenine into zeatin and its metabolites by 3-week-old Datura innoxia Mill, crown gall tissue. In a parallel study the levels of endogenous cytokinins were also determined by the stable isotope dilution technique using deuterium (2H)-labeled internal standards. Incorporation levels of the [15N5]adenine after 8 hours of incubation, expressed as a percentage of the endogenous cytokinins, were as follows: zeatin (1.0%), zeatin riboside (1.5%), and zeatin riboside 5′-phosphate (10.2%). These results are consistent with those observed in complementary experiments using [U-14C]adenine, and support the proposal that the cytokinin biosynthesis occurs primarily at the nucleotide level. The effect of tissue age on cytokinin biosynthesis, determined by [U-14C]adenine incorporation into cytokinins by tissues at varying growth stages, indicated a steady increase with time reaching maximal synthesis at five weeks following subculture after which the level of 14C incorporation into cytokinins declined.  相似文献   

3.
The catabolism of cytokinins is a vital component of hormonal regulation, contributing to the control of active forms of cytokinins and their cellular distribution. The enzyme catalyzing the irreversible cleavage of N6-side chains from cytokinins is a flavoprotein classified as cytokinin dehydrogenase (CKX, EC 1.5.99.12). CKXs also show low cytokinin oxidase activity, but molecular oxygen is a comparatively poor electron acceptor. The CKX gene family of Arabidopsis thaliana comprises seven members. Four code for proteins secreted to the apoplast, the remainder are not secreted. Two are targeted to the vacuoles and one is restricted to the cytosol. This study presents the purification and characterization of each of these non-secreted CKX enzymes and substrate specificities are discussed with respect to their compartmentation. Vacuolar enzymes AtCKX1 and AtCKX3 were produced in Pichia pastoris and cytosolic enzyme AtCKX7 was expressed in Escherichia coli. The recombinant proteins were purified by column chromatography. All enzymes preferred synthetic electron acceptors over oxygen, namely potassium ferricyanide and 2,3-dimetoxy-5-methyl-1,4-benzoquinone (Q0). In slightly acidic conditions (pH 5.0), N6-(2-isopentenyl)adenine 9-glucoside (iP9G) was the best substrate for AtCKX1 and AtCKX7, whereas AtCKX3 preferentially degraded N6-(2-isopentenyl)adenine 9-riboside-5′-monophosphate (iPMP). Moreover, vacuolar AtCKX enzymes in certain conditions degraded N6-(2-isopentenyl)adenine di- and triphosphates two to five times more effectively than its monophosphate.  相似文献   

4.
Changes in primary metabolism of lettuce, Lactuca sativa L. (cv. Cobham Green), induced by compatible interaction with the biotrophic oomycete pathogen Bremia lactucae Regel (race BL 16), under two intensities of illumination in the presence and absence of exogenous cytokinins were studied by chlorophyll fluorescence imaging. Thirteen days post-inoculation leaf discs infected by B. lactucae exhibited impairments of photosynthesis associated with biotrophic infections, including: reductions in photosynthetic pigment contents and the maximum quantum yield of photosystem II photochemistry (FV/FM), inhibition of electron transport (ΦPSII) and increased non-photochemical chlorophyll fluorescence quenching (NPQ). Detected changes in photosynthetic parameters correlated with the leaf area colonized by the pathogen’s intercellular hyphae. Applications of two cytokinins, benzylaminopurine and meta-topolin, previously shown to suppress B. lactucae sporulation if applied 24 h prior to inoculation at a concentration of 200 μM, retarded the pathogen’s asexual reproduction with no apparent negative effects on the host’s photosynthetic apparatus. However, long-lasting treatment of healthy tissues with this high concentration of exogenous cytokinin led to effects parallel to pathogenesis: reductions in photosynthetic pigment contents accompanied by inhibition of photosystem II photochemistry and electron transport. These effects of both prolonged exposure to cytokinins and the pathogenesis were weaker in discs exposed to the lower photosynthetic photon flux density. The role of cytokinins in plant-biotrophic pathogen interactions and their potential as disease control agents are discussed.  相似文献   

5.
Endogenous cytokinins in the ribosomal RNA of higher plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous cytokinin-active ribonucleosides were isolated from the rRNA and tRNA of pea epicotyls (Pisum sativum L., var Alaska) and of wheat germ (Triticum aestivum). The RNA preparations were analyzed for cytokinins by enzymic hydrolysis, ethyl acetate extraction, and Sephadex LH-20 fractionation in several solvents. Tentative identification of the cytokinins was based on cochromatography with synthetic cytokinin standards in several systems and on activity in the tobacco bioassay. Both the rRNA and tRNA from 10 day old pea epicotyls contained ribosylzeatin, isopentenyladenosine, and 2-methylthioribosylzeatin. The latter compound was the most active fraction in the pea rRNA, but was the least active fraction in the tRNA, where isopentenyladenosine activity was predominant. The 2-methylthioribosylzeatin from pea rRNA was identified by gas chromatography-mass spectrometry. Wheat germ rRNA contained cis and trans ribosylzeatin and 2-methylthioribosylzeatin. The tRNA contained isopentenyladenosine in addition. The specific cytokinin activity (activity per A260 unit) of the tRNA was over forty times that of the rRNA. Significant contamination of the rRNA preparations by cytokinin-containing tRNA is considered unlikely on the basis of quantitative differences in the cytokinin content of the rRNA and tRNA preparations, electrophoretic analysis of rRNA purity and cytokinin analysis of fractionated oligonucleotide digests.  相似文献   

6.
Following harvest, Kinnow mandarin (Citrus nobilis × Citrus deliciosa) fruits were variously treated with gibberellins (GA) and cytokinins. Ethylene caused marked chlorophyll (Chl) degradation and its effect was partially reversed by kinetin and benzylaminopurine (BAP) and to a lesser extent by GA3 and GA4+7. No appreciable accumulation of carotenoids (Car) occurred in these fruits irrespective of treatment. The loss of Chl during natural maturation was significantly reduced by cytokinins. Treatments with gibberellins alone or in combination with cytokinins were much less effective. The reduced loss of Chl in response to exogenously applied cytokinins may be probably related to a decline in its endogenous levels.  相似文献   

7.
The activities of the free base and ribonucleoside forms of cytokinins bearing saturated and unsaturated N6-isoprenoid side chains have been examined in callus cultures derived from Phaseolus vulgaris cv. Great Northern, P. lunatus cv. Kingston, and the interspecific hybrid Great Northern × Kingston. In callus of cv. Great Northern, cytokinins bearing saturated side chains (N6-isopentyladenine, N6-isopentyladenosine, dihydrozeatin, and ribosyldihydrozeatin) were always more active than the corresponding unsaturated analogs (N6-[Δ2-isopentenyl]adenine, N6-[Δ2-isopentenyl]adenosine, zeatin, and ribosylzeatin). In callus of cv. Kinston, the cytokinins bearing unsaturated side chains were either more active or equally as active as the saturated compounds. These differences in cytokinin structure-activity relationships were correlated with differences in the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine. In Great Northern tissues, this cytokinin was rapidly degraded to adenosine; in Kingston tissues, the major metabolite was the corresponding nucleotide. The growth responses of callus of the interspecific hybrid were intermediate between the parental tissues, and the metabolism of 14C-N6-(Δ2-isopentenyl)adenosine by the hybrid callus exhibited characteristics of both parental tissues. The results are consistent with the hypothesis that the weak activity of cytokinins with unsaturated side chains in promoting the growth of Great Northern callus is due to the rapid conversion of these cytokinins to inactive metabolites.  相似文献   

8.
Cytokinin activity based on two bioassays was at least 100-fold higher in Psychotria punctata leaf discs with bacterial nodules than in discs without them. Nodulated discs from young leaves yielded 0.4 to 6 μg of cytokinin (zeatin equivalents) per g fresh weight of leaf tissue, whereas non-nodulated discs from the same leaves yielded 0 to 0.003 μg per g fresh weight. These estimates probably include free-base cytokinins and, if present, any nucleoside cytokinins precipitable by acidic silver nitrate. Cytokinin concentrations in Psychotria leaf nodules appear to be higher than normally found in green leaves of other plants. In l-butanol-acetic acid-water (12:3:5, v/v), the one peak of activity chromatographed with an RF similar to zeatin's, but both number and identity of the active substance(s) remain unknown. These findings suggest that a cytokinin is produced by bacteria in leaf nodules of P. punctata and that it is involved in the symbiosis.  相似文献   

9.
The aims of this study were to monitor endogenous cytokinin levels during germination and early seedling establishment in oats, maize, and lucerne to determine which cytokinin forms are involved in these processes; to quantify the transfer ribonucleic acid (tRNA)-bound cytokinins; and to measure cytokinin oxidase/dehydrogenase (CKX) activity. Cytokinins were identified using UPLC-MS/MS. The predominant free cytokinins present in the dry seeds were dihydrozeatin-type (DHZ) in lucerne and maize and cZ-type (cis-zeatin) in oats. Upon imbibition, there was a large increase in cZ-type cytokinins in lucerne although the cZ-type cytokinins remained at high levels in oats. In maize, the high concentrations of DHZ-type cytokinins decreased prior to radicle emergence. Four tRNA-bound cytokinins [cis-zeatin riboside (cZR)>N 6-(2-isopentenyl)adenosine (iPR), dihydrozeatin riboside (DHZR), trans-zeatin riboside (tZR)] were detected in low concentrations in all three species investigated. CKX activity was measured using an in vitro radioisotope assay. The order of substrate preference was N 6-(2-isopentenyl)adenine (iP)>trans-zeatin (tZ)>cZ in all three species, with activity fluctuating as germination proceeded. There was a negative correlation between CKX activity and iP concentrations and a positive correlation between CKX activity and O-glucoside levels. As O-glucosides are less resistant to CKX degradation, they may provide a readily available source of cytokinins that can be converted to physiologically active cytokinins required during germination. Aromatic cytokinins made a very small contribution to the total cytokinin pool and increased only slightly during seedling establishment, suggesting that they do not play a major role in germination.  相似文献   

10.
Zeatin, (±)-dihydrozeatin and optically active cytokinins (asymmetric carbon α to the exocyclic nitrogen) were tested for their ability to induce development of shoots in tobacco callus. Zeatin and dihydrozeatin were equally active. The levorotatory compounds tested were active in inducing shoot formation but the corresponding dextrorotatory compounds were inactive at all concentrations tested. These findings suggest that the group attached to the N6 position of cytokinins binds to a receptor site to bring about organ formation.  相似文献   

11.
The mantled abnormality phenotype of the oil palm affects fruit development and thus jeopardizes oil yield. Cytokinins have been implicated in the development of the mantled phenotype. Endogenous cytokinin levels in the normal and mantled phenotypes were compared to determine whether levels of specific cytokinins are associated with mantling. Endogenous cytokinins were identified and quantified in in vitro cultures and inflorescences from normal and mantled oil palms. Twenty-two isoprenoid cytokinins, comprising the zeatin, dihydrozeatin, and isopentenyladenine types, were quantified. Total cytokinin levels, particularly of trans-zeatin and isopentenyladenine types, increased during the in vitro culture process, with the highest levels detected at the proliferating polyembryoid stages. The cytokinins were present mainly in their inactive 9-glucoside forms during in vitro culture. On the other hand, the predominant trans-zeatin cytokinins in inflorescences were present mainly in their ribotide forms, suggesting a metabolic pool of cytokinins for conversion to biologically active free bases or ribosides. Levels of specific cytokinins were significantly different in tissues at different stages. Mantled developed inflorescences contained higher levels of isopentenyladenine 9-glucoside compared with normal inflorescences. Mantled-derived callus tissues had higher isopentenyladenine levels but significantly lower levels of trans-zeatin 9-glucoside, dihydrozeatin riboside, and dihydrozeatin riboside 5′-monophosphate cytokinins compared with normal-derived callus. It would be of considerable interest to verify these specific cytokinin differences in more callus cultures and clones.  相似文献   

12.
Crassulacean acid metabolism (CAM) is a physiological adaptation of plants that live in stress environment conditions. A good model of CAM modulation is the epiphytic bromeliad, Guzmania monostachia, which switches between two photosynthetic pathways (C3–CAM) in response to different environmental conditions, such as light stress and water availability. Along the leaf length a gradient of acidity can be observed when G. monostachia plants are kept under water deficiency. Previous studies showed that the apical portions of the leaves present higher expression of CAM, while the basal regions exhibit lower expression of this photosynthetic pathway. The present study has demonstrated that it is possible to induce the CAM pathway in detached leaves of G. monostachia kept under water deficit for 7 d. Also, it was evaluated whether CAM expression can be modulated in detached leaves of Guzmania and whether some spatial separation between NO3 reduction and CO2 fixation occurs in basal and apical portions of the leaf. In addition, we analyzed the involvement of endogenous cytokinins (free and ribosylated forms) as possible signal modulating both NO3 reduction and CO2 fixation along the leaf blade of this bromeliad. Besides demonstrating a clear spatial and functional separation of carbon and nitrogen metabolism along G. monostachia leaves, the results obtained also indicated a probable negative correlation between endogenous free cytokinins – zeatin (Z) and isopentenyladenine (iP) – concentration and PEPC activity in the apical portions of G. monostachia leaves kept under water deficit. On the other hand, a possible positive correlation between endogenous Z and iP levels and NR activity in basal portions of drought-exposed and control leaves was verified. Together with the observations presented above, results obtained with exogenous cytokinins treatments, strongly suggest that free cytokinins might act as a stimulatory signal involved in NR activity regulation and as a negative regulator of PEPC activity in CAM-induced leaves of G. monostachia during a diel cycle.  相似文献   

13.
A method for rapid identification of bacterial cytokinins has been developed in which cultures are fed [3H]adenine, the cytokinins (including 3H-labeled cytokinins) are isolated by immunoaffinity chromatography, and analyzed by HPLC with on-line scintillation counting. Analysis of Agrobacterium tumefaciens strains showed that some produced primarily trans-zeatin, whereas others produced primarily trans-zeatin riboside. Pseudomonas syringae pv savastanoi produced mixtures of trans-zeatin, dihydrozeatin, 1″-methyl-trans-zeatin riboside, and other unknown cytokinin-like substances. Corynebacterium fascians, produced cis-zeatin, isopentenyladenine and isopentenyladenosine. The technique is designed for qualitative rather than quantitative studies and allows ready identification of bacterial cytokinins. It may also have utility in the study of plant cytokinins if adequate incorporation of label into cytokinin precursor pools can be achieved.  相似文献   

14.
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved.  相似文献   

15.
Cytokinins, which have some structural similarities to ancymidol, a plant growth retardant, were tested for their effects on the cell-free oxidation ofent-kaurene. Results indicate that several cytokinins inhibit this reaction in microsomal extracts of liquid endosperm from immature wild cucumber seeds. N6-cyclohexanemethyladenine was the most active (inhibiting 50% of the controlent-kaurene oxidation at 2×10?6 M). N6-isoamyladenine, N6-benzyladenine, N6-(Δ2-isopentenyl)adenine and dihydrozeatin were active at successively higher concentrations. Zeatin, kinetin, adenine, N6-benzyladenosine, and N6-(isopentenyl)adenosine were inactive in this system. The basis for the inhibition ofent-kaurene oxidation by cytokinins may be similar to that of ancymidol: interaction with cytochrome P-450. A binding spectrum similar to that of ancymidol with cytochrome P-450 from wild cucumber endosperm microsomes was obtained with four active cytokinins. The cytokinin binding properties of this protein are currently under investigation. No metabolism of N6-benzyladenine could be detected under conditions in which the cytokinin inhibited the oxidation ofent-kaurene toent-kaurenol.  相似文献   

16.
At least two types of cytokinin-binding sites are present in a particulate fraction of tobacco (Nicotiana tabacum L.) cells that sediments at 80,000 x g. The major binding component has a low affinity towards cytokinins, is resistant to heating at 100°C, and is not specific for biologically active cytokinin analogues. The second site occurs in much lower frequency, is heat labile, shows high affinity towards cytokinins, and is specific for biologically active analogs of the hormone. The testing for binding specificity was mainly performed with a series of halogenated benzyladenine derivatives having a wide range of biological activities. The low-affinity binding site shows some of the same features as talcum powder, a non-biological material which binds cytokinins in a non-specific fashion. The properties of the high-affinity binding site are consistent with the expected characteristics of a cytokinin receptor. However, the role of the observed high-affinity binding site with regard to the biological action of cytokinins is not yet known.Abbreviations BA N 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kd equilibrium dissociation constant - Rt total concentration of binding sites In partial fulfillment of the requirements for the Ph.D. degree in the Department of Botany and Plant Pathology, Michigan State University  相似文献   

17.
Cytokinin ribosides (N6-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N6-isopentenyladenosine, kinetin riboside, and N6-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented.Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC50 = 0.5–11.6 μM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI50 = 0.07–84.60 μM, 1st quartile = 0.33 μM, median = 0.65 μM, 3rd quartile = 1.94 μM) was confirmed using NCI60, a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI60 cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.  相似文献   

18.
Cytokinins (CKs) are one of the main regulators of in vitro growth and development and might affect the developmental state and function of the photosynthetic apparatus of in vitro shoots. Effects of different cytokinin regimes including different types of aromatic cytokinins, such as benzyl-adenine, benzyl-adenine riboside and 3-hydroxy-benzyladenine alone or in combination were studied on the capacity of the photosynthetic apparatus and the pigment content of in vitro apple leaves after 3 weeks of culture. We found that the type of cytokinins affected both chlorophyll a and b contents and its ratio. Chlorophyll content of in vitro apple leaves was the highest when benzyl-adenine was applied as a single source of cytokinin in the medium (1846–2176 μg/1 g fresh weight (FW) of the leaf). Increasing the concentration of benzyl-adenine riboside significantly decreased the chlorophyll content of the leaves (from 1923 to 1183 μg/1 g FW). The highest chl a/chl b ratio was detected after application of meta-topolin (TOP) at concentrations of 2.0 and 6.0 μM (2.706 and 2.804). Chlorophyll fluorescence was measured both in dark-adapted (Fv/Fm test) and in light-adapted leaf samples (Yield test; Y(II)). The maximum quantum yield and efficiency of leaves depended on the cytokinin source of the medium varied between 0.683 and 0.861 (Fv/Fm) indicating a well-developed and functional photosynthetic apparatus. Our results indicate that the type and concentration of aromatic cytokinins applied in the medium affect the chlorophyll content of the leaves in in vitro apple shoots. Performance of the photosynthetic apparatus measured by chlorophyll fluorescence in the leaves was also modified by the cytokinin supply. This is the first ever study on the relationship between the cytokinin supply and the functionability of photosystem II in plant tissue culture and our findings might help to increase plantlet survival after transfer to ex vitro conditions.  相似文献   

19.
An improved bioassay for cytokinins using cucumber cotyledons   总被引:2,自引:1,他引:1       下载免费PDF全文
The cucumber cotyledon greening bioassay is frequently used for detecting cytokinins. Beneficial modifications of the original technique included using 5-day-old cucumber (Cucumus sativus L., cv. National Pickling) cotyledons treated with combinations of 40 millimolar KCl and various concentrations of cytokinins. A dark incubation period of 20 hours was followed by an exposure to light for 3.5 hours. Under these conditions, extremely low (0.0001 milligram per liter) concentrations of N6-benzyladenine, zeatin, kinetin, or zeatin riboside can be detected. Of the four cytokinins tested, kinetin appeared to be the least active. With these improvements, the assay is 10 times more sensitive than is the previously described cucumber cotyledon greening bioassay for cytokinins.  相似文献   

20.
Data are presented on the cytokinin status of seeds and seed components, at different stages of development in Phaseolus coccineus L., as determined with the soybean callus growth bioassay: A change in cytokinin types according to developmental stage occurred: from biologically very active less polar types (zeatin=Z) at early stages to more polar types (zeatin glucoside=Z9G and zeatin riboside=Zr), with relatively low biological activity, at intermediate and late stages of seed development: When cytokinins were analyzed separately in embryos (embryo proper) and suspensors at two embryonic stages: heart-shaped (A) and middle cotyledonary embryos (stage B) respectively, it was found that: i) at stage A, the suspensor showed cytokinin activity at the level of Z, 2iPA (2-isopentenyladenosine) and Zr, whereas more polar cytokinins (Z9G, Zr) were present in the embryo; ii) at stage B, when the embryo seems to become autonomous for cytokinin supply, there was a relative abundance of active cytokinins (Z, 2iPA) in the embryo to which Z9G activity in the suspensor corresponded. It is concluded that the suspensor plays an essential role in embryogenesis by acting as a hormone source to the early embryo.Abbreviations GA gibberellic acid - 2iPA 2-isopentenyladenosine - Stage A heart-shaped embryo - siage B middle cotyledonary embryo - Z zeatin - Z9G zeatin glucoside - Zr Zeatin riboside  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号