首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
J Y Yu  H Namiki  A Gorbman 《Life sciences》1978,22(3):269-281
A study was made of the separate patterns of luteinizing hormone (LH) and follicle stimulating hormone (FSH) release from isolated rat pituitary tissue evoked by synthetic gonadotropin releasing hormone (GnRH) or female hypothalamic extracts (HE), respectively, in a continuous perifusion system. Under defined conditions, gonadotropin release from hemipituitaries was relatively stable and reproducible. Absolute levels of LH and FSH release evoked by HE in terms of their GnRH content were always greater than those following exposure to synthetic GnRH at varying doses. Synthetic GnRH released more FSH than LH. In contrast, the HE released slightly higher levels of LH than FSH. The data suggest that the female rat hypothalamus contains substances other than GnRH, capable of releasing both LH and FSH. It is possible that such unidentified components can modify the hypophysial action of GnRH, resulting in particular circumstances in a differential release of LH and FSH.  相似文献   

2.
To investigate how various concentrations of serum prolactin (PRL) influence the priming effect of luteinizing hormone releasing hormone (LH-RH) on the pituitary gland, 24 women with various blood PRL concentrations received intravenous injections of 100 micrograms of synthetic LH-RH twice at an interval of 60 minutes and their serum LH and follicle-stimulating hormone (FSH) were measured and analysed. In the follicular phase with a normal PRL concentration (PRL less than 20 ng/ml, n = 6), marked first peaks of the two hormones following the first LH-RH stimulation and enhanced second peaks after the second LH-RH administration were observed, indicating a typical priming effect of LH-RH on gonadotropins, though the second response of FSH was more moderate than that of LH. In hyperprolactinemia, in which the serum PRL concentration was higher than 70 ng/ml (n = 13), the basal concentration of gonadotropins was not significantly changed but the priming effect of LH-RH on LH and FSH was significantly decreased (p less than 0.01). No marked second peaks of LH and FSH were observed, suggesting an inhibitory effect of hyperprolactinemia on the second release of LH and FSH. In contrast, this effect was restored in a group of women whose serum PRL concentration was between 30 and 50 ng/ml (n = 5). Furthermore, enhanced second peaks of both LH and FSH were noted after successful bromocriptine therapy reduced hyperprolactinemia (PRL greater than 70 ng/ml) to less than 25 ng/ml (n = 5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
DBcAMP significantly increased the release of GH but not of LH, FSH, TSH, or PRL, except in the presence of hypothalamic extract when it augmented the release of LH, FSH, and GH, reversed the inhibition of PRL, but did not further influence TSH release. Theophylline increased release of GH and PRL while inducing increased tissue content of cAMP without consistently increasing the release of TSH, LH, or FSH. Hypothalamic extractor K+-stimulated hormone rel-ase was consistently and significantly potentiated by theophylline. Neither hypothalamic extract, increased [K+], or synthetic TRH and LRH were able to raise tissue content of cAMP while producing their expected effects on hormone release. Cholera enterotoxin produced a highly significant increase in tissue content of the cyclic nucleotide but increased the release of GH only, and not that of LH, FSH, TSH, or PRL. DBcAMP was able to lower the threshold concentration of K+ required to stimulate release of GH, LH, and FSH and also to augment K+-stimulated release to the higher levels induced by the hypothalamic releasing hormones. It did not augment K+-induced release of TSH.  相似文献   

4.
Cells were dispersed from bovine anterior pituitary glands, by digestion with collagenase, and cultured. After 4 days the cell monolayers were incubated with fresh medium containing synthetic hypophysiotropic peptides for 2, 6, or 20 h, and hormone released into the medium was estimated by radioimmunoassay. After 2 h, thyroid releasing hormone (TRH) stimulated the release of thyroid-stimulating hormone (TSH) up to eightfold, and of prolactin (PRL) and follicle-stimulating hormone (FSH) about twofold at a minimal effective concentration of 1 ng/ml; enhanced growth hormone (GH) release was not apparent until 20 h, and release of luteinizing hormone (LH) and adrenocorticotrophic hormone (ACTH) was unaffected. Luteinizing hormone releasing hormone (LH-RH) enhanced release of LH maximally (three- to fourfold) during a 2 h incubation and was effective at 0.1 ng/ml; FSH release was significantly enhanced by about 50% above control level. Growth hormone release inhibiting hormone (GH-RIH)(somatostatin) showed significant effects only in the 20 h incubation; GH release was inhibited by 50% and release of PRL was slightly, but significantly, enhanced. Pituitary cell monolayers apparently permit maximal expression of releasing activities inherent in the hypothalamic hormones.  相似文献   

5.
Numerous biochemical pathways influence the synthesis and release of anterior pituitary hormones. Releasing factors extracted from the hypothalamus and prostaglandins (PGs) appear to alter a common biochemical activity, adenyl cyclase, in pituitary cells. Luteinizing hormone releasing hormone (LRH), prostaglandin (PGE1), 7 oxa-13-prostynoic acid and cycloheximide were tested for individual and interacting effects on the in vitro release of FSH, LH and prolactin from hemipituitaries of 15 day old female rats. LRH (10 ng/ml) consistently released both LH and FSH in all in vitro experiments and inhibited prolactin release in 1 of 2 experiments. Lower concentrations (5 and 1 ng/ml) also stimulated LH and FSH release but did not influence prolactin release. Concurrent depletion of stored LH and FSH in the gland was observed. PGE1 in a 6.5 hour incubation increased the storage of LH within the gland in the absence of LRH. In a 1.5 hour incubation in the presence of LRH, storage of LH was also increased. PGE1 had no effect on LH and FSH release; however, in 1 of 2 experiments it stimulated prolactin release in the absence of LRH. Prostynoic acid stimulated LH and FSH release but did not synergize with LRH action in the same tissue. Cycloheximide did not affect LH release during the first 30 minutes of incubation; however, the release during the subsequent 1 hour was significantly inhibited. Similar tissue also exposed to cycloheximide was still responsive to LRH during the latter 1 hour incubation period. Cycloheximide had no effect on prolactin storage and release from the same tissue.  相似文献   

6.
Four-day-old pituitary monolayer cultures were incubated with various hypothalamic releasing hormones. Rat hypothalamic extract stimulated the release of LH, FSH, and PRL by these cultures in a dose-related fashion. Synthetic LH-RH stimulated the release of LH and FSH but not of PRL. Synthetic TRH increased the release of PRL but had no effect on LH or FSH. At 10(-8) M, somatostatin did not affect any of the three adenohypophyseal hormones. Incubation with DBcAMP or theophylline also stimulated PRL release without any detectable effect on LH and FSH release. These data suggest the involvement of cyclic AMP--adenylate cyclase system in the mechanism of PRL release, but their involvement in gonadotropin release requires further studies.  相似文献   

7.
Searching for the best procedure for simultaneous estimation of the anterior pituitary hormones, extraction efficiencies of various media, additives such as urea and triton X-100, and physical treatments such as freezing-thawing (F-T) and sonication, were examined by measuring prolactin (PRL), growth hormone (GH), lutropin (LH), follitropin (FSH), and thyrotropin (TSH) in the extracts. Ethanolic media (60% EtOH) gave high yields of PRL at neutral to alkaline pH, but poor extraction of GH accompanied by a marked loss of its immunoreactivity during storage. Ethanolic media also gave a poor yield of LH even at high pH. Aqueous media like PBS at various pH, 0.1 M acetic acid and distilled water were considerably effective in the extraction of GH, LH, FSH and TSH if they were coupled with F-T and sonication. However, high yields of PRL could not be obtained with these aqueous media even with F-T and sonication. Hartree's 40% EtOH-6% ammonium acetate, pH 5.1, solubilized considerable amounts of glycoprotein hormones, but yielded almost no GH and only a small amount of PRL. The addition of triton X-100 to PBS (pH 7) at 0.1% resulted in the maximum extraction of glycoprotein hormones with homogenization and F-T, but further sonication was necessary for GH and PRL. When the anterior pituitaries were homogenized and frozen-thawed in PBS (pH 7) containing 1 M urea, yields of PRL, GH, LH, FSH, and TSH were maximum, and sonication did not cause any additional extraction, indicating that this procedure, i.e. homogenization and F-T in 1 M urea-PBS, would be the best for the simultaneous estimation of these anterior pituitary hormones.  相似文献   

8.
Inhibin-like activity is present both in testicular and ovarian fluids. Various methods can be used for the detection of this activity. Indirect methods, using organ weights as an endpoint, lack the specificity required for reliable estimation of inhibin-like activity. With in-vivo bioassay systems, using estimation of circulating concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in intact or gonadectomized, immature or adult, male or female rats, a suppression of FSH concentrations only is usually observed after injection of inhibin-like material. The largest suppression of FSH concentrations can be obtained in short-term gonadectomized adult female or 35-day-old male rats. Addition of inhibin-like activity to cultured pituitary cells specifically suppresses the spontaneous release of FSH from the cells. After stimulation of cultured pituitary cells with LH-releasing hormone (LH-RH), the release of both FSH and LH are suppressed when inhibin-like activity is present. From dialysis experiments it appears that the molecular weight of the inhibin-like material in follicular fluid is greater than 10 000. However, acid ethanol extracts of this fluid contain a factor with a molecular weight smaller than 10 000, which does not suppress the spontaneous release of FSH from cultured pituitary cells, but diminishes the LH-RH-stimulated release of both LH and FSH. Furthermore, both follicular fluid and Sertoli cell culture medium can stimulate the release of FSH and LH from pituitary cells when these are cultured without addition of fetal calf serum. These results suggest that gonadal fluids contain several non-steroidal factors which can influence the release of gonadotrophins from pituitary cells.  相似文献   

9.
Investigations were undertaken to study the effect of in vitro addition of testosterone (0.3 mM) on the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) by pituitary-hypothalamus complex (PHC) or the whole pituitary (PI) incubated for 72 hr, with incubation media changed every 24 hr. PHC or PI were from adult intact or castrated (7 days post castration) rats. The tissues incubated with or without testosterone were further exposed to 0.1 nM luteinizing hormone-releasing hormone (LHRH) for 4 hr. Incubation media and the pituitary were analyzed for PRL and gonadotrophin content. While PHC from normal and castrated rats released increasing amounts of LH with diminishing amounts of FSH and PRL at different periods of incubation, PI showed a decrease in the amounts of gonadotrophin and PRL released. Co-incubation of PHC or PI of intact or castrated rats with testosterone stimulated the release of LH and FSH during the first or second-24 hr incubation but inhibited the release of PRL in all the three incubations of 24 hr each. The extent of PRL inhibition increased with increasing incubation period. Testosterone had no effect on LHRH induced release of PRL but inhibited LHRH induced release of LH and FSH by pituitaries from constructs of normal rats. Testosterone reduced intrapituitary contents of PRL and FSH of intact and castrated rats. The data are interpreted to suggest that hypothalamus is essential for the maintenance of functional pituitary in vitro and that intrinsic differences exist in mechanisms regulating the secretion of LH, FSH and PRL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Numerous biochemical pathways influence the synthesis and release of anterior pituitary hormones. Releasing factors extracted from the hypothalamus and prostaglandins (PGs) appear to alter a common biochemical activity, adenyl cyclase, in pituitary cells. Luteinizing hormone releasing hormone (LRH), prostaglandin (PGE1), 7 oxa-13-prostynoic acid and cycloheximide were tested for individual and interacting effects on the in vitro release of FSH, LH and prolactin from hemipituitaries of 15 day old female rats. LRH (10 ng/ml) consistently released both LH and FSH in all in vitro experiments and inhibited prolactin release in 1 of 2 experiments. Lower concentrations (5 and 1 ng/ml) also stimulated LH and FSH release but did not influence prolactin release. Concurrent depletion of stored LH and FSH in the gland was observed. PGE1 in a 6.5 hour incubation increased the storage of LH within the gland in the absence of LRH. In a 1.5 hour incubation in the presence of LRH, storage of LH was also increased. PGE1 had no effect on LH and FSH release; however, in 1 of 2 experiments it stimulated prolactin release in the absence of LRH. Prostynoic acid stimulated LH and FSH release but did not synergize with LRH action in the same tissue. Cycloheximide did not affect LH release during the first 30 minutes of incubation; however, the release during the subsequent 1 hour was significantly inhibited. Similar tissue also exposed to cycloheximide was still responsive to LRH during the latter 1 hour incubation period. Cycloheximide had no effect on prolactin storage and release from the same tissue.  相似文献   

11.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Serum growth hormone (GH), prolactin (PRL), cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) levels were evaluated before and after a bicycle ergometer exercise test in 8 male competitive volleyball players and in 8 sedentary healthy males of the same age. Increased serum GH and cortisol values after exercise in both groups were found, whereas an exercise-induced PRL release was observed in athletes only. Serum levels of LH, FSH and TSH were unaffected by the test in all subjects. A possible role of training in conditioning the hypothalamopituitary exercise-induced secretion is suggested.  相似文献   

13.
Six peptide sequences residing between basic amino acid residues in GAP were tested for effects on the release of FSH, LH and PRL in vivo in ovariectomized, estrogen-progesterone-primed (OEP) rats. Synthetic GAP peptides (1–13, 1–23, 15–23, 25–36, 38–53 and 41–53) were injected intravenously (IV) into conscious OEP rats and plasma levels of FSH, LH and PRL were measured by RIA. The activity of GAP peptides in the control of PRL was further examined in ether-stressed male rats which were injected IV with GAP peptides just prior to a 1-min etherization. GAP(1–13) significantly stimulated FSH release at doses of 1, 10 and 100 μg, whereas it stimulated LH release only at the highest dose of 100 μg. GAP(1–23) elevated plasma levels of FSH and LH only at a dose of 100 μg. The other 4 peptides had no effect on the release of gonadotropins. Of these 6 peptides, only GAP(1–13) partially lowered the plasma levels of PRL at the high dose of 100 μg in OEP rats, but it had no effect on the ether-induced PRL surge at doses of 10 and 100 μg. In conclusion, both GAP(1–13) and GAP(1–23) stimulate FSH and LH release in vivo; these 2 peptides are much less potent in stimulating gonadotropin release than is LHRH. GAP(1–13) exerts a preferential FSH-releasing activity, but its PRL-inhibiting activity is minimal.  相似文献   

14.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

15.
The effects of hypothalamic lesions designed to destroy either the anterior median eminence (ME) or the posterior and mid-ME on pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined in castrated male rats. In sham-operated animals, mean plasma FSH concentrations rose to peak at 10 min after the onset of sampling, whereas LH declined to a nadir during this time. In the final sample at 120 min, the mean FSH concentrations peaked as LH decreased to its minimal value. In rats with anterior ME lesions, there was suppression of LH pulses with continuing FSH pulses in 12 of 21 rats. On the other hand, in animals with posterior to mid-ME lesions, 3 out of 21 rats had elimination of FSH pulses, whereas LH pulses were maintained. Fifteen of 42 operated rats had complete ME lesions, and pulses of both hormones were abolished. The remaining 12 rats had partial ME lesions that produced a partial block of the release of both hormones. The results support the concept of separate hypothalamic control of FSH and LH release with the axons of the putative FSH-releasing factor (FSHRF) neuronal system terminating primarily in the mid- to caudal ME, whereas those of the LHRH neuronal system terminate in the anterior and mid-median eminence. We hypothesize that pulses of FSH alone are mediated by release of the FSHRF into the hypophyseal portal vessels, whereas those of LH alone are mediated by LHRH. Pulses of both gonadotropins simultaneously may be mediated by pulses of both releasing hormones simultaneously. Alternatively, relatively large pulses of LHRH alone may account for simultaneous pulses of both gonadotropins since LHRH has intrinsic FSH-releasing activity.  相似文献   

16.
Suckling may prolong the anovulatory period postpartum by 1) a neural-mediated inhibition of luteinizing hormone-releasing hormone (LHRH)-induced gonadotropin secretion, or 2) an inhibitory effect of hormones released by suckling on gonadotropin secretion and/or action at the ovary. In the present investigation we considered whether a suckling event caused 1) acute inhibition of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion, and 2) release of glucocorticoids and/or prolactin (PRL). Six Hereford cows remained intact and six were ovariectomized (ovx) on day 7 postpartum. Calves remained with their dams continuously. Cows were bled at 10-min intervals during 6 consecutive hr on days 14, 28 and 42 postpartum. Both LH and FSH were released episodically by day 14 in intact and ovx cows, but suckling did not acutely affect LH and FSH secretion. A PRL release accompanied suckling 67, 96 and 95% of the time. However, among all instances where PRL was released on days 14, 28 and 42 postpartum, 67, 29 and 37% occurred independent of a suckling event. Glucocorticoids were not released by suckling in intact cows but were released in ovx cows. We conclude that suckling does not acutely affect LH or FSH concentrations in serum of cows postpartum, that PRL concentrations usually increase in serum coincident with suckling but can be released at other times, and suckling-induced glucocorticoid release depends upon the presence of the ovary.  相似文献   

17.
Marked polymorphism was revealed in both stored and circulating forms of immunoreactive follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the bullfrog, Rana catesbeiana, by exclusion chromatography on columns of Sephracyrl-S200. FSH behaved as a more homogeneous and larger molecule than LH from the same pituitary or plasma, but the properties of both hormones in the plasma were markedly affected by gonadectomy. Chromatographic profiles of FSH stored in the pituitaries were similar in intact and gonadectomized frogs, but pituitary LH in the latter was comprised of a larger proportion of early eluting activity. Previously purified preparations of bullfrog FSH and LH were more homogeneous than these extracts. Differences between pituitary hormones in intact and gonadectomized frogs were small compared with those between circulating hormones. Plasma FSH and lH from gonadectomized frogs behaved as more homogeneous and larger molecules than those from intact frogs in which plasma gonadotropins were elevated normally or by injections with gonadotropin releasing hormone (GnRH). Some differences in circulating hormones were also observed between a normal male and female and both differed from gonadectomized an GnRH-treated intact frogs. Chromatographs of plasma gonadotropins in GnRH-treated animals generally resembled those of the hormones stored in the pituitary, whereas plasma FSH and LH in gonadectomized frogs appeared more homogeneous and larger than the pituitary-stored forms. Those pronounced differences in chromatographic properties of gonadotropins in intact and gonadectomized frogs correlate with previously observed effects of gonadectomy on clearance profiles of circulating FSH and LH.  相似文献   

18.
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex.  相似文献   

19.
The aims of the present study were to clarify the effect of kisspeptin-10 (Kp10) on the secretion of luteinizing hormone (LH), follicle stimulating hormone (FSH), growth hormone (GH) and prolactin (PRL) in goats, and compare the characteristics of any response with those of the response to gonadotropin-releasing hormone (GnRH). The experiments were performed using four female goats (4–5 years old) in the luteal phase of estrous cycle. A single intravenous (i.v.) injection of 1, 5 and 10 μg/kg b.w. (0.77, 3.85 and 7.69 nmol/kg b.w.) of Kp10 stimulated the release of LH. Maximum values were observed 20–30 min after the injection. On the other hand, Kp10 did not alter plasma GH and PRL concentrations significantly. Three consecutive i.v. injections of Kp10 (5 μg/kg b.w.) or GnRH (5 μg/kg b.w.: 4.23 nmol/kg b.w.) at 2-h intervals increased both plasma LH and FSH levels after each injection (P < 0.05); however, the responses to Kp10 were different from a similar level of GnRH. The rate of decrease in LH and FSH levels following the peak was attenuated in Kp10-treated compared to GnRH-treated animals. These results show that Kp10 can stimulate the release of LH and FSH but not GH and PRL in female goats and suggest that the LH- and FSH-releasing effect of the i.v. injection of Kp10 is less potent than that of GnRH.  相似文献   

20.
A study was conducted with hypophysectomized hamsters to determine effects of administration of prolactin (PRL), luteinizing hormone (LH), and follicle-stimulating hormone (FSH)-alone or in combination-on testicular PRL receptors and in vitro testosterone production. Hormonal injections commenced the second day after hypophysectomy, and hamsters were killed on Day 5, approximately 13 h after the last hormonal injection. PRL receptor numbers were reduced by hypophysectomy, and PRL administration alone lessened the extent of this decrease. By themselves, neither LH nor FSH affected PRL receptors, but a combination of PRL + FSH + LH produced the greatest effect on these receptors. Receptor affinity was only modestly affected by any treatments. In vitro testosterone synthesis was measured after addition of 0, 2, 10, and 50 mIU of human chorionic gonadotropin (hCG) to incubations of testicular tissue. Neither PRL nor FSH by themselves in vivo affected basal or hCG-stimulated testosterone production. However, PRL + FSH increased (p less than 0.05) the magnitude of the in vitro testosterone response to hCG, as well as the sensitivity of that response (slope of the dose-response curve). LH alone increased both basal and hCG-stimulated testosterone production. PRL + LH provided no additional increase in the magnitude of the testosterone response, but increased (p less than 0.05) the sensitivity. PRL + FSH + LH in vivo provided for the greatest sensitivity of the testosterone response to hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号