首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haloarcula marismortui formed acetate during aerobic growth on glucose and utilized acetate as growth substrate. On glucose/acetate mixtures diauxic growth was observed with glucose as the preferred substrate. Regulation of enzyme activities, related to glucose and acetate metabolism was analyzed. It was found that both glucose dehydrogenase (GDH) and ADP-forming acetyl-CoA synthetase (ACD) were upregulated during periods of glucose consumption and acetate formation, whereas both AMP-forming acetyl-CoA synthetase (ACS) and malate synthase (MS) were downregulated. Conversely, upregulation of ACS and MS and downregulation of ACD and GDH were observed during periods of acetate consumption. MS was also upregulated during growth on peptides in the absence of acetate. From the data we conclude that a glucose-inducible ACD catalyzes acetate formation whereas acetate activation is catalyzed by an acetate-inducible ACS; both ACS and MS are apparently induced by acetate and repressed by glucose.  相似文献   

2.
Penetration of glucose into cells of several extremely halophilic archaebacteria of the Halobacterium and Haloferax genera (Halobacterium saccharovorum and Halobacterium salinarium, Haloferax volcanii and Haloferax mediterranei) has been studied. Some characteristics of transport systems of carbohydrate-utilizing halobacteria Halobacterium saccharovorum, Haloferax mediterranei and Haloferax volcanii (pH and temperature optima, stereospecificity, kinetic parameters) have been determined. Inability of H. salinarium cells for active glucose transport has been shown. The dependence of glucose transport on the Na+ ions gradient (on the whole cells and membrane vesicles) has been demonstrated. Cells or membrane vesicles of carbohydrate-utilizing halobacteria grown in media containing this sugar indicated the activation of glucose transport, whereas cells grown in media without sugars did not. This fact has allowed us to conclude that corresponding transport systems are inducible.  相似文献   

3.
The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated:
  1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate.
  2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi?Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected.
  3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming).
These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.  相似文献   

4.
The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.Abbreviations. KDG 2-Keto-3-deoxygluconate - KDPG 2-Keto-3-deoxy-6-phosphogluconate - FBP Fructose-1,6-bisphosphate - TIM Triosephosphate isomerase - GAP Glyceraldehyde-3-phosphate - PEP Phosphoenolpyruvate - PTS Phosphotransferase - 1-PFK Fructose 1-phosphate kinase An erratum to this article can be found at  相似文献   

5.
Mutants of Escherichia coli K12 have been isolated that grow on media containing pyruvate of proline as sole carbon sources despite the presence of 10 or 50 mM-sodium fluoroacetate. Such mutants lack either acetate kinase [ATP: acetate phosphotransferase; EC 2.7.2.1] or phosphotransacetylase [acetyl-CoA: orthophosphate acetyltransferase; EC 2.3.1.8] activity. Unlike wild-type E. coli, phosphotransacetylase mutants do not excrete acetate when growing aerobically or anaerobically on glucose; their anaerobic growth on this sugar is slow. The genes that specify acetate kinase (ack) and phosphotransacetylase (pta) activities are cotransducible with each other and with purF and are thus located at about min 50 on the E. coli linkage map. Although Pta- and Ack- mutants are greatly impaired in their growth on acetate, they incorporate [2-14C]acetate added to cultures growing on glycerol, but not on glucose. An inducible acetyl-CoA synthetase [acetate: CoA ligase (AMP-forming); EC 6.2.1.1] effects this uptake of acetate.  相似文献   

6.
7.
Halophilic archaea activate acetate via an (acetate)-inducible AMP-forming acetyl-CoA synthetase (ACS), (Acetate + ATP + CoA Acetyl-CoA + AMP + PPi). The enzyme from Haloarcula marismortui was purified to homogeneity. It constitutes a 72-kDa monomer and exhibited a temperature optimum of 41°C and a pH optimum of 7.5. For optimal activity, concentrations between 1 M and 1.5 M KCl were required, whereas NaCl had no effect. The enzyme was specific for acetate (100%) additionally accepting only propionate (30%) as substrate. The kinetic constants were determined in both directions of the reaction at 37°C. Using the N-terminal amino acid sequence an open reading frame — coding for a 74 kDa protein — was identified in the partially sequenced genome of H. marismortui. The function of the ORF as acs gene was proven by functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies, following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione and substrates. Refolding was dependent on salt concentrations of at least 2 M KCl. The recombinant enzyme showed almost identical molecular and catalytic properties as the native enzyme. Sequence comparison of the Haloarcula ACS indicate high similarity to characterized ACSs from bacteria and eukarya and the archaeon Methanosaeta. Phylogenetic analysis of ACS sequences from all three domains revealed a distinct archaeal cluster suggesting monophyletic origin of archaeal ACS.  相似文献   

8.
9.
High rates of methanogenesis from acetate and ATP were observed from cell-free extracts of the thermophilic acetotrophic methanogen Methanothrix (Methanosaeta) thermophila strain CALS-1 when cultures were grown in a pH auxostat fed with acetic acid. Specific methanogenic activities ranged from 50–300 nmol min–1 (mg protein)–1, which was comparable to those for whole cells. In contrast to results with Methanosarcina spp., the reaction did not require high levels of H2 in the headspace. CO was inhibitory to methanogenesis from acetate. The inhibition by CO and the lack of effect of H2 on methanogenesis from acetate resemble previous results with whole cells of CALS-1. Protein concentrations in extracts > 5 mg/ml were required for good activity, and the optimum temperature for the methanogenesis was near 65° C. ATP was required in substrate quantities and was converted mainly to AMP. The maximum CH4/ATP stoichiometry obtained was near 1.0, consistent with acetate activation using an acetyl-CoA synthetase mechanism that converts ATP to AMP and pyrophosphate. Methanogenesis in extracts was inhibited by bromoethane sulfonate and cyanide, indicating the involvement of methylcoenzyme M methylreductase and a carbon monoxide dehydrogenase complex with methanogenesis from acetate. These results are consistent with acetyl-coenzyme A (CoA) as the form of activated acetate involved in methanogenesis from acetate in strain CALS-1, but no activity could be obtained from extracts using acetyl-CoA as a substrate. Received: 18 March 1996 / Accepted: 14 June 1996  相似文献   

10.
Anaerobic ammonium-oxidizing bacteria were recently shown to use short-chain organic acids as additional energy source. The AMP-forming acetyl-CoA synthetase gene (acs) of Kuenenia stuttgartiensis, encoding an important enzyme involved in the conversion of these organic acids, was identified and heterologously expressed in Escherichia coli to investigate the activation of several substrates, that is, acetate, propionate and butyrate. The heterologously expressed ACS enzyme could complement an E. coli triple mutant deficient in all pathways of acetate activation. Activity was observed toward several short-chain organic acids, but was highest with acetate. These properties are in line with a mixotrophic growth of anammox bacteria. In addition to acs, the genome of K. stuttgartiensis contained the essential genes of an acetyl-CoA synthase/CO dehydrogenase complex and genes putatively encoding two isoenzymes of archaeal-like ADP-forming acetyl-CoA synthetase underlining the importance of acetyl-CoA as intermediate in the carbon assimilation metabolism of anammox bacteria.  相似文献   

11.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

12.
Abstract When glycerol is added to cultures of halophilic archaea, especially representatives of the genera Haloferax and Haloarcula , massive amounts of acids are formed. HPLC and enzymatic analyses of supernatants of Haloferax cultures grown in the presence of glycerol showed that all produced d -lactate and acetate. Cultures of two Haloarcula species tested produced pyruvate and acetate from glycerol. In all cases only a small fraction of the added glycerol was converted to organic acids. Both lactate, pyruvate, and acetate can be used as substrates for the growth of many halophilic archaea, including those that produce them, and acid production is possibly an overflow phenomenon, due to the limited capacity of the enzymatic systems responsible for their dissimilation. To test whether lactate is formed also by natural communities of halophilic archaea at low glycerol concentrations such as may be encountered in situ, we incubated samples from the Dead Sea and from the saltern crystallizer ponds at Eilat with 1.5–3 μM [U-14C]glycerol. After depletion of the glycerol, around 10% of the label was found in lactate and acetate in both brine samples. In addition, pyruvate was formed in Dead Sea water. Upon further incubation of the Dead Sea samples after depletion of the glycerol, pyruvate disappeared rapidly, while acetate and lactate concentrations decreased only very slowly. In saltern brines the lactate formed was degraded after depletion of the glycerol, but the concentration of labelled acetate decreased only very slowly.  相似文献   

13.
Desulfurella acetivorans and Desulfuromonas acetoxidans are both acetate oxidizing sulfur reducing eubacteria. The two organisms differ in G+C content of DNA (31.4% versus 50–52%) and in growth temperature optimum (55°C versus 30°C) and in that D. acetivorans does not contain cytochromes. Both organisms are shown to be similar in that they metabolize acetate via the citric acid cycle rather than via the carbon monoxide dehydrogenase pathway. They were found to differ, however, in the mechanism of acetate activation and of succinate formation. In D. acetoxidans acetyl-CoA and succinate are formed from acetate and succinyl-CoA involving only one enzyme, succinyl-CoA: acetate CoA-transferase. In D. acetivorans acetyl-CoA is generated from acetate via acetyl phosphate involving acetate kinase and phosphate acetyltransferase; succinate is formed from succinyl-CoA via succinyl-CoA synthetase. Both sulfur reducers were found to contain menaquinone.Abbreviations HPLC high performance liquid chromatography - acetyl-P acetyl phosphate  相似文献   

14.
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2, CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.  相似文献   

15.
Abstract The minimum threshold concentrations of acetate utilization and the enzymes responsible for acetate activation of several methanogenic bacteria were investigated and compared with literature data. The minimum acetate concentrations reached by hydrogenotrophic methane bacteria, which require acetate as carbon source, were between 0.4 and 0.6 mM. The acetoclastic Methanosarcina achieves acetate concentrations between 0.2 and 1.2 mM and Methanothrix between 7 and 70 μM. For the activation of acetate most of the hydrogenotrophic methane bacteria investigated use an acetyl-CoA synthetase with a relatively low K m (40–90 μM) for acetate. although the affinity for acetate was high, the hydrogenotrophic methane bacteria were not able to remove acetate to lower concentrations than the acetoclastic methane bacteria, neither in pure cultures nor in anaerobic granular sludge samples. Based on these observations, it is not likely that hydrogenotrophic methanogens compete strongly for acetate with the acetoclastic methane bacteria.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are accumulated in many prokaryotes. Several members of the Halobacteriaceae produce poly-3-hydroxybutyrate (PHB), but it is not known if this is a general property of the family. We evaluated identification methods for PHAs with 20 haloarchaeal species, three of them isolates from Permian salt. Staining with Sudan Black B, Nile Blue A, or Nile Red was applied to screen for the presence of PHAs. Transmission electron microscopy and 1H-nuclear magnetic resonance spectroscopy were used for visualization of PHB granules and chemical confirmation of PHAs in cell extracts, respectively. We report for the first time the production of PHAs by Halococcus sp. (Halococcus morrhuae DSM 1307T, Halococcus saccharolyticus DSM 5350T, Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T, Halococcus hamelinensis JCM 12892T, Halococcus qingdaonensis JCM 13587T), Halorubrum sp. (Hrr. coriense DSM 10284T, Halorubrum chaoviator DSM 19316T, Hrr. chaoviator strains NaxosII and AUS-1), haloalkaliphiles (Natronobacterium gregoryi NCMB 2189T, Natronococcus occultus DSM 3396T) and Halobacterium noricense DSM 9758T. No PHB was detected in Halobacterium salinarum NRC-1 ATCC 700922, Hbt. salinarum R1 and Haloferax volcanii DSM 3757T. Most species synthesized PHAs when growing in synthetic as well as in complex medium. The polyesters were generally composed of PHB and poly-ß-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). Available genomic data suggest the absence of PHA synthesis in some haloarchaea and in all other Euryarchaeota and Crenarchaeota. Homologies between haloarchaeal and bacterial PHA synthesizing enzymes had indicated to some authors probable horizontal gene transfer, which, considering the data obtained in this study, may have occurred already before Permian times.  相似文献   

17.
The overexpression of acetyl-CoA (CoA) synthetase (ACS) in Escherichia coli showed significant reduction in acetate during glucose fermentation. It also greatly enhanced acetate assimilation when acetate was used as a carbon source. These features are ideal for applications in metabolic engineering. ACS overexpression can be strategically applied to reduce acetate byproduct, recover wasted carbon, and redirect carbon flux toward more favorable pathways. The native acs gene was cloned and overexpressed in E. coli. Studies showed significant effects on acetate production and assimilation in cultures grown in minimal and complex media with glucose or acetate as the carbon source.  相似文献   

18.
The triangular disk-shaped halophilic archaeon Haloarcula japonica strain TR-1 has a glycoprotein on its cell surface. The complete gene encoding the cell surface glycoprotein (CSG) was cloned and sequenced. The gene has an open reading frame of 2586 bp, and a potential archaeal promoter sequence approximately 150 bp upstream of the ATG initiation codon. The mature CSG is composed of 828 amino acids and is preceded by a signal sequence of 34 amino acid residues. A hydropathy analysis showed a hydrophobic stretch at the C-terminus, that probably serves as a transmembrane domain. The amino acid sequence of the Ha. japonica CSG showed 52.1% and 43.2% identities to those from the Halobacterium halobium and Haloferax volcanii CSGs, respectively. Five potential N-glycosylation sites were found in the mature Ha. japonica CSG, sites that were distinctly different from those in Hb. halobium and Hf. volcanii. The Ha. japonica CSG gene was expressed in Escherichia coli. Received: 20 September 1996 / Accepted: 9 October 1996  相似文献   

19.
The hyperthermophilic anaerobic eubacterium Thermotoga maritima was grown on glucose as carbon and energy source. During growth 1 mol glucose was fermented to 2 mol acetate, 2 mol CO2 and 4 mol H2. The molar growth yicld on glucose (Yglucose) was about 45 g cell dry mass/mol glucose. In the presence of elemental sulfur growing cultures of T. maritima converted 1 mol glucose to 2 mol acetate, 2 mol CO2 about 0.5 mol H2 and about 3.5 mol H2S. Yglucose was about 45 g/mol. Cell extracts contained all enzymes of the Embden-Meyerhof pathway: hexokinase (0.29 U/mg, 50°C), glucose-6-phosphate isomerase (0.56 U/mg, 50°C), phosphofructokinase (0.19 U/mg, 50° C), fructose-1,6-bisphosphate aldolase (0.033 U/mg, 50°C), triosephosphate isomerase (6.3 U/mg, 50°C), glyceraldehyde-3-phosphate dehydrogenase (NAD+ reducing: 0.63 U/mg, 50°C), phosphoglycerate kinase (3.7 U/mg, 50°C), phosphoglycerate mutase (0.4 U/mg, 50°C); enolase (4 U/mg, 80°C), pyruvate kinase (0.05 U/mg, 50°C). Furthermore, cell extracts contained pyruvate: ferredoxin oxidoreductasee (0.43 U/mg, 60°C); NADH: ferredoxin oxidoreductase (benzylviologen reduction: 0.46 U/mg, 80°C); hydrogenase (benzylviologen reduction: 15 U/mg, 80°C), phosphate acetyltransferase (0.13 U/mg, 80°C), acetate kinase (1.2 U/mg, 55°C), lactate dehydrogenase (0.16 U/mg, 80°C) and pyruvate carboxylase (0.02 U/mg, 50°C). The findings indicate that the hyperthermophilic eubacterium T. maritima ferments sugars (glucose) to acetate, CO2 and H2 involving the Embden-Meyerhof pathway, phosphate acetyltransferase and acetate kinase. Thus, the organism differs from the hyperthermophilic archaeon Pyrococcus furiosus which ferments sugars to acetate, CO2 and H2 involving a modified non-phosphorylated Entner-Doudoroff pathway and acetyl-CoA synthetase (ADP forming).  相似文献   

20.
The tolerance of halophilic archaebacteria towards bromide was tested in view of the fact that bromide occurs in natural brines in concentrations of up to 66 mM. It was found that, while concentrations of up to 0.8–1M are tolerated well by all halobacterial types examined, great differences exist between species with respect to bromide tolerance. WhileHalobacterium (H. salinarium, H. halobium, andH. sodomense) andNatronobacterium species are only moderately tolerant,Haloarcula (H. vallismortis, H. marismortui), andHaloferax species (H. mediterranei, H. gibbonsii) tolerate higher concentrations.Haloferax volcanii proved extremely tolerant and showed growth in bromide media at very low chloride concentrations (below 50 mM). No correlation was found between bromide tolerance and the bromide concentration in the habitat from which the strains were isolated. Iodide proved much more toxic than bromide. Bromide-tolerant strains also proved relatively resistant to growth inhibition by iodide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号