首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further identify structural features of the hemopexin molecule important for its heme transport function, a fragment of the heme-binding domain (residues 1–213, Mr 35 kD, domain I) of rabbit hemopexin was obtained after digestion with subtilisin. Both apo- and heme-domain I were cleaved by subtilisin, and the subtilisin-digested form of domain I (called SD-DI) was shown by microsequencing to have been cleaved at Asp 22 forming a 30 kD subfragment lacking the conserved histidine residue at position 7 and the N-linked oligosaccharide at Asn 9. The 5 kD peptide cleaved from domain I is not disulfide linked to domain I and can be removed by membrane ultrafiltration. SD-DI retains the ability of domain I to bind heme, to associate with the other functional domain of hemopexin (domain II), and to interact with the hemopexin receptor on mouse Hepa cells. Moreover, although the heme complex of SD-DI is less themostable than native heme-domain I, like heme-domain I, heme-SD-DI is stabilized to a large extent when associated with domain II. These results show that the conserved His 7 residue is not involved in heme binding by hemopexin and that residues 1–22 of hemopexin and the N-linked oligosaccharide at Asn 9 are not essential for either receptor binding or interdomain interactions. Nevertheless, these N-terminal residues of hemopexin do contribute significantly to the overall stability of the hemopexin molecule and the interdomain interactions necessary for receptor recognition.  相似文献   

2.
Origin of bombesin-like peptides in human fetal lung   总被引:2,自引:0,他引:2  
Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).  相似文献   

3.
1. Hemopexin was isolated from bovine serum of a single animal in a yield of 0.5 mg/ml. 2. Bovine hemopexin was found to exist in two isoforms of mol. wt 68,000 and 65,000. 3. Treatment of hemopexin with glycopeptidase F yields a single band corresponding to a mol. wt of 51,000. 4. The protein binds heme on an equimolar ratio and shows a single component in reverse-phase high performance liquid chromatography. 5. The amino acid composition of bovine hemopexin compares with that of hemopexin isolated form other animals.  相似文献   

4.
We report here on physicochemical characteristics of chicken hemopexin, which can be isolated by heme-agarose affinity chromatography [Tsutsui, K., & Mueller, G. C. (1982) J. Biol. Chem. 257, 3925-3931], in comparison with representative mammalian hemopexins of rat, rabbit, and human. The avian polypeptide chain appears to be slightly longer (52 kDa) than the human, rat, or rabbit forms (49 kDa), and also the glycoprotein differs from the mammalian hemopexins in being an alpha 1-glycoprotein instead of a beta 1-glycoprotein. This distinct electrophoretic mobility probably arises from significant differences in the amino acid composition of the chicken form, which, although lower in serine and particularly in lysine, has a much higher glutamine/glutamate and arginine content, and also a higher proline, glycine, and histidine content, than the mammalian hemopexins. Compositional analyses and 125I concanavalin A and 125I wheat germ agglutinin binding suggest that chicken hemopexin has a mixture of three fucose-free N-linked bi- and triantennary oligosaccharides. In contrast, human hemopexin has five N-linked oligosaccharides and an additional O-linked glycan blocking the N-terminal threonine residue [Takahashi, N., Takahashi, Y., & Putnam, F. W. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2021-2025], while the rabbit form has four N-linked oligosaccharides [Morgan, W. T., & Smith, A. (1984) J. Biol. Chem. 259, 12001-12006]. In keeping with the finding of a simpler carbohydrate structure, the avian hemopexin exhibits only a single band on polyacrylamide gel electrophoresis under both nondenaturing and denaturing conditions, whereas the hemopexins of the three mammalian species tested show several bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hemopexin is a serum glycoprotein that binds heme with high affinity and delivers heme to the liver cells via receptor-mediated endocytosis. A hinge region connects the two non-disulfide-linked domains of hemopexin, a 35-kDa N-terminal domain (domain I) that binds heme, and a 25-kDa C-terminal domain (domain II). Although domain II does not bind heme, it assumes one structural state in apo-hemopexin and another in heme-hemopexin, and this change is important in facilitating the association of heme-hemopexin with its receptor. In order to elucidate the structure and function of hemopexin, it is important to understand how structural information is transmitted to domain II when domain I binds heme. Here we report a study of the protein-protein interactions between domain I and domain II using analytical ultracentrifugation and isothermal titration calorimetry. Sedimentation equilibrium analysis showed that domain I associates with domain II both in the presence and absence of heme with Kd values of 0.8 microM and 55 microM, respectively. The interaction between heme-domain I and domain II has a calorimetric enthalpy of +11 kcal/mol, a heat capacity (delta Cp) of -720 cal/mol.K, and a calculated entropy of +65 cal/mol.K. By varying the temperature of the centrifugation equilibrium runs, a van't Hoff plot with an apparent change in enthalpy (delta H) of -3.6 kcal/mol and change in entropy (delta S) of +8.1 cal/mol.K for the association of apo-domain I with domain II was obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have purified a carbohydrate-binding protein from porcine heart by affinity chromatography on asialofetuin-Sepharose and have characterized this protein with respect to its size, amino acid composition, partial amino acid sequence, and carbohydrate-binding specificity. Porcine heart lectin (PHL) has a subunit molecular mass of 14,700 and is immunologically cross-reactive with a polyclonal antibody raised against a lectin isolated from calf heart. The amino acid composition of PHL is similar to that of lectins that have been isolated from calf heart, bovine brain, and rat lung. Moreover, the primary sequences of four tryptic fragments (52 amino acids total) derived from PHL are closely related to sequences previously determined for 10 other vertebrate-derived lectins. The ability of PHL to agglutinate rabbit erythrocytes was inhibited only by oligosaccharides containing terminal beta-galactosyl residues. These data indicate that PHL is a vertebrate "S-type" lectin and provide further evidence that the structures and carbohydrate-binding specificities of these lectins are highly conserved across diverse vertebrate genera.  相似文献   

7.
In the presence of porcine submaxillary N-acetylgalactosaminyltransferase and uridine diphospho-N-acetyl-D-galactosamine, approx. 1.2-1.5 mol of N-acetylgalactosamine were transfered per mol of myelin basic protein. Tritium-labelled N-acetylgalactosamine-labelled basic protein was digested with trypsin and the peptides were separated by HPLC and the radioactivity measured. Most of the radioactivity was associated with three peptide peaks (I, II and III) containing 17, 69 and 6% of the total radioactivity, respectively. The remaining radioactivity was distributed amongst several peptides, each containing less than 2.5% of the total radioactivity. Glycosylation of the basic proteins isolated from human, bovine and guinea pig myelins showed that they were all equally good acceptors. In spite of differences in the peptide profiles of the basic proteins from different species, the distribution of radioactivity between the three peptide peaks was similar for all the species studied. The transfer of N-acetylgalactosamine to peptide II was much faster than to peptides I and III. The apparent Km values of the three peptides were within a narrow range of 0.52-0.63 mM, whereas the Vmax values were considerably different. The glycosylated peptide peaks (I, II and III) were separated by electrophoresis, the radioactivity measured, and amino acid compositions determined after hydrolysis. The major radioactive peptides of the human basic protein were identified with tryptic peptides containing the following sequences: (formula; see text)  相似文献   

8.
Glycophorin from porcine erythrocyte membranes was digested with trypsin and chymotrypsin. Some of the peptides were isolated by conventional techniques. The amino acid sequence was determined for two isolated peptides: a chymotryptic glycopeptide of 19 residues and a tryptic peptide of 36 residues which represented the carboxy terminal of the glycophorin.  相似文献   

9.
Rabbit histidine-rich glycoprotein (HRG) binds low-spin heme and metals tightly at several sites that contain histidine. As part of an on-going effort to define and locate the binding sites for these and the other ligands of HRG, the sequence: NH2-Gly-His-Phe-Pro-Phe-His-Trp-... was found in a 16 kDa heme-binding peptide isolated from HRG. The spacing of the histidyl residues in this peptide, which contains the C-terminal 79 residues of HRG, together with molecular modeling suggested that this sequence might constitute one heme binding site of HRG by accommodating heme in a bis-histidyl linkage. Three peptides based on this sequence (I, HFPFHW; II, WHFPFH; and III, HFGFHW) were synthesized, and their ability to bind heme and metals examined. All three peptides bind heme as demonstrated by the changes produced in the absorbance of heme when mixed with the peptides. Substituting glycine for proline in the central position or moving the location of the tryptophan did not affect heme binding. The apparent Kd's of the mesoheme/peptide I, II and III complexes are 75 +/- 25 microM, indicative of heme binding approximately 100 times less avid than the mesoheme/HRG complex (Kd ca. 1 microM), but nearly 1000 times tighter than that of the mesoheme/histidine complex (Kd ca. 60 mM). The absorbance spectra of the mesoheme/peptide complexes, the loss of binding caused by modification of histidine residues, and the pH dependence of heme binding, all indicate that heme forms a low spin, bis-histidyl type of complex with these peptides, like that formed with HRG itself. Copper, but not cadmium or nickel, was an effective inhibitor of heme binding by the peptides. The sequence of HRG congruent with the sequence of peptide I is proposed to be one heme- and metal-binding site of rabbit HRG.  相似文献   

10.
After exhaustive pronase digestion, purification by gel filtration and affinity chromatography on concanavalin A, three glycopeptide fractions were obtained from rat hemopexin. Two fractions (I and II) were concanavalin A non-reactive and one (III) was concanavalin A reactive. On the basis of carbohydrate composition, methylation analysis and proton nuclear magnetic resonance spectroscopy, the primary structure of the glycan in fraction III is proposed as being a mixture of mono- and di-sialo-diantennae of the N-glycosidic, N- acetyllactosamine type. Hydrazinolysis of glycopeptides not binding to concanavalin A yielded mixtures of oligosaccharides for both fractions. These oligosaccharides were separated by HPLC; the molar composition of each of them is given. These data suggest that rat hemopexin contains, among others, a diantennary structure bearing three sialic acid residues.  相似文献   

11.
Hemopexin alters conformation upon binding heme as shown by circular dichroism (CD), but hemopexin binds the heme analog, iron-meso-tetra-(4-sulfonatophenyl)-porphine (FeTPPS), without undergoing concomitant changes in its CD spectrum. Moreover, FeTPPS, unlike heme, does not increase the compactness of the heme-binding domain (I) of hemopexin shown by an increased sedimentation rate in sucrose gradients. On the other hand, like heme, FeTPPS forms a bishistidyl coordination complex with hemopexin and upon binding protects hemopexin from cleavage by plasmin. Competitive inhibition and saturation studies demonstrate that FeTPPS-hemopexin binds to the hemopexin receptor on mouse hepatoma cells but with a lower affinity (Kd 125 nM) more characteristic of apo-hemopexin than heme-hemopexin (Kd 65 nM). This provides evidence that conformational changes produced in hemopexin upon binding heme, but not upon binding FeTPPS, are important for increasing the affinity of hemopexin for its receptor. The amount of cell-associated radiolabel from 55FeTPPS-hemopexin increases linearly for up to 90 min but at a rate only about a third of that of the mesoheme-complex. As expected from the recycling of hemopexin, more iron-tetrapyrrole than protein is associated with the Hepa cells, but the ratio of 55Fe-ligand to 125I-hemopexin is only 2:1 for FeTPPS-hemopexin compared to 4:1 for mesoheme complexes. [55Fe]Mesoheme was associated at 5 min with lower density fractions containing plasma membranes and at 30 min with fractions containing higher density intracellular compartments. In contrast, 55FeTPPS was found associated with plasma membrane fractions at both times and was not transported into the cell. Although FeTPPS-hemopexin binds to the receptor, subsequent events of heme transport are impaired. The results indicate that upon binding heme at least three types of conformational changes occur in hemopexin which have important roles in receptor recognition and that the nature of the ligand influences subsequent heme transport.  相似文献   

12.
Hydroxyproline-2-epimerase was treated with 14C-iodoacetate under conditions that produced almost complete inactivation of the enzyme and concomitant incorporation of almost one molar equivalent of iodoacetate. Both processes were prevented by saturating concentrations of substrate. From reaction mixtures in which both incorporation and inactivation were 85 to 90% complete, two radioactive tryptic peptides were isolated by paper chromatography-electrophoresis. The incorporated radioactivity was divided between the peptides in an approximately 2:1 ratio. Analysis of the isolated peptides suggested that they both contained 9 amino acids and had similar composition; one appeared to be a lysine, the second an arginine peptide. Attempts to sequence each peptide failed, apparently because of the conversion of the S-carboxymethylcysteine to S-carboxymethylcysteine sulfone, indicating that the cysteine residue was N-terminal in each peptide.  相似文献   

13.
We have recently demonstrated that the 1CF11 monoclonal antibody bound human milk lactoferrin (hLf) through the recognition of two distinct portions of the molecule, namely the N-glycan-relevant and -irrelevant structural elements. In this present study, we prepared four immunoreactive peptide fractions containing N-linked glycan from tryptic digests of reduced and alkylated hLf by using a concanavalin A lectin column and reverse-phase HPLC. Deglycosylation of these fractions and a competitive binding assay using fucosylated oligosaccharides revealed that the non-reducing terminal fucose residue in N-linked glycan(s) played a significant role in recognizing the N-glycan-relevant element in hLf by 1CF11.  相似文献   

14.
Incubation of first trimester placental explants with [35S]O4 resulted in incorporation of radioactive sulfate into free and dimer forms of alpha subunit of human chorionic gonadotropin. Sulfate was not attached to N-linked oligosaccharides since it was not released by endoglycosidase F. Analysis of pronase digest revealed the presence of tyrosine-O-[35S]O4. Comparison of tryptic peptides of alpha subunit labeled with several amino acids identified the penultimate carboxyterminal peptide as the sulfation site. Since the C-terminal region of the hCG alpha plays a critical role in receptor binding of the hormone, modification in this region may regulate hormonal activity.  相似文献   

15.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

16.
Two different forms of Ca2+-dependent cysteine proteinase, low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II, are known to be heterodimers, each composed of one heavy (called 80K) and one light (called 30K) subunit. The most probable identity of the 30K and the substantial difference between the 80K subunits of porcine calpains I and II were clearly demonstrated by comparing the tryptic peptide maps obtained upon running a high performance liquid chromatography which permitted parallel detection of tryptophan-containing peptides by fluorometry. Comparison of the amino acid compositions of the two 30K and 80K subunits also confirmed this conclusion. The same chromatographical analysis also revealed close structural similarity of the human calpain I 30K subunit, and even some similarity existing between the calpain I 80K subunits of human and porcine origins.  相似文献   

17.
Cell surface receptors for immunoglobulin E were isolated by repetitive affinity chromatography from rat basophilic leukemia cells biosynthetically labeled with L-[35S]methionine and D-[3H]mannose. Native immunoglobulin E receptor appeared as a very broad band in the 45,000 to 62,000 Mr region in sodium dodecyl sulfate polyacrylamide gels. However, from cells cultured in the presence of tunicamycin, a relatively narrow band with an apparent Mr of 38,000 was isolated. The 38,000 Mr band rebound to immunoglobulin E-Sepharose, was immunoprecipitated with antibodies to immunoglobulin E receptor, shared tryptic peptides with native receptor, and was labeled with L-[35S]methionine but not D-[3H]mannose, and thus appears to be immunoglobulin E receptor lacking N-linked oligosaccharides. It is demonstrated that N-linked oligosaccharides account for much of the apparent heterogeneity of native receptor in sodium dodecyl sulfate polyacrylamide gels and in two-dimensional gel electrophoresis. A receptor-associated protein with apparent Mr = 30,000, prominently labeled with L-[35S]methionine but not with D-[3H]mannose, did not have altered molecular properties when isolated from tunicamycin-cultured cells, and did not share tryptic peptides with receptor.  相似文献   

18.
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations.  相似文献   

19.
Analysis of the quantitative precipitin reaction of acylphosphatase from porcine skeletal muscle with rabbit antiserum indicated the presence of at least two antigenic determinants on the porcine enzyme molecule. Immunological cross-reactivities of acylphosphatases from equine and rabbit skeletal muscles were examined. In double immunodiffusion with the antiserum, the precipitin lines of the porcine and equine enzymes completely fused, while the rabbit enzyme gave no precipitin line. The reaction between the 125I-labeled porcine enzyme and its antibody was inhibited to the same extent by the porcine and equine enzymes, but not by the rabbit enzyme. The three enzymes were similar in net charge and molecular weight on polyacrylamide gel electrophoreses. No conformational difference among the three enzymes was observed in their circular dichroism spectra. The amino acid composition of the rabbit enzyme differed from those of the porcine and equine enzymes in the contents of Glu, Gly, Lys, and Arg. Differences in the sequence of the rabbit enzyme from that of the porcine enzyme were investigated by comparison of the peptide maps of the tryptic peptides of the two enzymes. Four peptides of the rabbit enzyme were located at different positions from those of the porcine enzyme. Three of the four peptides from both enzymes were sequenced and all the tryptic peptides of both enzymes were characterized by amino acid analysis. The tryptic peptides of rabbit enzyme were tentatively aligned on the basis of their amino acid compositions and sequence homologies, compared with the corresponding peptides of the porcine enzyme. Among five amino acid residues of the porcine enzyme, Arg-4, Asp-28, Arg-31, Glu-56, and Ile-68, which are replaced in the rabbit enzyme, Arg-4 and Asp-28 are considered to be included in the antigenic determinants.  相似文献   

20.
Tryptic peptides from hemoglobin (Hb) beta-chains were used as model substrates for limited proteolysis by prolyl endopeptidase (EC 3.4.21.26) from porcine muscle. From the physicochemical and enzymatic properties of prolyl endopeptidase the conditions for routine digestion were established as follows: the molar ratio of enzyme to substrate was 1 to 100, and the reaction was carried out in sodium phosphate buffer (pH 6.4) at 37 degrees C for 4 h. Under these conditions the peptide bonds on the carboxyl terminal sides of proline and alanine residues in the tryptic peptides from Hb beta-chains (with Mr values of less than 2100) were hydrolyzed by the enzyme with the exception of the amino terminal alanyl bond and aminoacyl alanyl bond. In addition, one of five seryl bonds was cleaved by the enzyme. However, the Hb beta-chain itself, Mr 16,600, and its two CNBr-peptides with Mr 10,200 and Mr 6400, respectively, were not hydrolyzed. Under the same conditions a prolyl bond in oxidized B-chains of insulin, Mr 3400, was partially digested, and an alanyl bond was not hydrolyzed. The data indicate that the prolyl endopeptidase is useful for the limited proteolysis of peptides with relative masses of less than 3000 at both prolyl and alanyl bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号