首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise function of activated microglia and their secretory products remains controversial. In order to assess the role of microglial secretion products, we established an in vitro model of an inflammatory reaction in the brain by co-culturing microglial and neuronal cell lines. Upon stimulation with interferon-γ and lipopolysaccharides, the microglial cells adopted an activated phenotype and secreted tumor necrosis factor-α (TNF-α), prostaglandin E2 and nitric oxide (NO). Neuronal degeneration was quantified by measuring the concentrations of microtubule associated protein tau and neuron specific enolase, which are also used as diagnostic tool in Alzheimer's disease, in supernatants. In activated contact co-cultures, the levels of these neuronal markers were significantly raised compared to non-activated co-cultures. NO-synthase inhibitors significantly diminished the rise of tau in activated co-cultures, while indomethacin, superoxide dismutase, or a neutralizing TNF-α antibody did not. When a chemical NO-donor or TNF-α were added to pure neuronal cultures, cell viability was significantly reduced. TNF-α increased neuronal sensitivity towards NO. There were indications that a part of the cells died by apoptosis. This model demonstrates a neurotoxic role for NO in microglia-induced neurodegeneration and provides a valuable in vitro tool for the study of microglia–neuron interactions during inflammation in the brain.  相似文献   

2.
Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.   总被引:31,自引:0,他引:31  
Activated microglial have been proposed to play a pathogenetic role in immune-mediated neurodegenerative diseases. To test this hypothesis, purified murine neonatal microglial were cocultured with neuronal cells derived from fetal brain. Activation with IFN-gamma and LPS of these cocultures brought about a sharp decrease in uptake of gamma-amino butyric acid and a marked reduction in neuronal cell survival. These effects varied with the density of microglia, the concentrations of the activation signals (IFN-gamma and LPS), and the duration of coculture. Inasmuch as addition of NG-monomethyl-L-arginine blocked these effects, a L-arginine-dependent neurocytotoxic mechanism was implicated. Abundant nitrite, a metabolite of the free radical nitric oxide (NO) derived from L-arginine, was detected in activated microglial/neuronal cell cocultures and in purified microglial cell cultures but not in purified astrocyte or neuronal cell cultures, suggesting that microglial were the principal source of the NO. These findings support the hypothesis that microglia are the source of a neurocytotoxic-free radical, and shed light on an additional mechanism of immune-mediated brain injury.  相似文献   

3.
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.  相似文献   

4.
We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (N(G)-monomethyl-L-arginine monoacetate (L-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-alpha) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-alpha by using neutralizing antibodies to TNF-alpha. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-alpha.  相似文献   

5.
6.
Since it is known that sialic acid participates in neuronal plasticity, it is resonable to investigate its role in microglia-neuron interactions. In this study, we tested the effects of enzymatic removal of sialic acid on neurite and cell body density in microglia-neuron co-cultures. Additionaly, we analyzed the expression of Siglec-F protein, putative receptor for sialic acids, in microglial cells as well as its affinity to neurons. The results showed that removal of sialic acids affects neuronal integrity and changes microglial morphology. In presence of microglial cells, endoneuraminidase and α-neuraminidase significantly reduced neurite density (p<0.05). Endoneuraminidase (p<0.05) and α-neuraminidase (p>0.05) decreased the number of neuronal cell bodies in comparison to control co-cultures. Neuraminidases-treated neurons showed reduced binding of Siglec-F protein, which we found in microglial cells. Our results suggest that interactions between sialic acids and Siglec receptors may protect neuronal integrity during neurodegenerative processes.  相似文献   

7.
Hypoxia/reoxygenation (H/R) elicits neuronal cell injury and glial cell activation within the central nervous system (CNS). Neuroinflammation is a process that primarily results from the acute or chronic activation of glial cells. This overactive state of glial cells results in the increased release of nitric oxide (NO) and/or tumor necrosis factor alpha (TNF-alpha), a process which can lead to neuronal damage or death. In this study, we found that hypoxia for eight or twelve hours (h) followed by 24 h reoxygenation (H8/ R24 or H12/R24) induced NO production and TNF-alpha release from cultures of enriched microglial or mixed glial cells. However, microglial cells could not survive longer periods of hypoxia (> or = 12 h) in microglia-enriched culture. While astrocytes retained a 95% viability following longer periods of H/R in astrocyte-enriched cultures, they did not produce any significant quantities of NO and TNF-alpha. Reoxygenation for prolonged periods (three and five days) following H24 resulted in progressively greater increases in NO production (about two-fold greater level in hypoxia as compared to normoxic conditions) accompanied by relatively less increases in TNF-alpha release in mixed glial cell cultures. Our data indicate that inflammatory mediators such as NO and TNF-alpha are released from glia-enriched mix culture in response to H/R. While microglial cells are more vulnerable than astrocytes during H/R, they survive longer in the presence of astrocyte and are the major cell type producing NO and TNF-alpha. Furthermore, the TNF-alpha release precedes NO production in response to a prolonged duration of reoxygenation following hypoxia for 24 h.  相似文献   

8.
9.
10.
Gangliosides activate cultured rat brain microglia   总被引:7,自引:0,他引:7  
Microglia, brain resident macrophages, are activated in brain injuries and several neurodegenerative diseases. However, microglial activators that are produced in the brain are not yet defined. In this study, we showed that gangliosides, sialic acid-containing glycosphingolipids, could be a microglial activator. Gangliosides induced production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) and expression of cyclooxygenase-2 (COX-2). The effect of gangliosides on NO release increased dose-dependently in the range of 10-100 microgram/ml; however, the effect decreased at concentrations higher than 200 microgram/ml. Specific types of gangliosides showed differential effects on microglial activation. Similar to gangliosides, GT1b induced production of NO and TNF-alpha and expression of COX-2. However, GM1 and GD1a induced expression of COX-2 but had little effect on NO and TNF-alpha release. The effect of gangliosides and GT1b on NO release was reduced in the presence of neuraminidase, which removes sialic acid residues from gangliosides and GT1b. Gangliosides activated extracellular signal-regulated kinase significantly but activated c-jun N-terminal kinase/stress-activated protein kinase and p38 relatively weakly. The inhibition of extracellular signal-regulated kinase by PD98059 reduced NO release from both gangliosides- and GT1b-treated microglia whereas inhibition of p38 by SB203580 increased it rather slightly. Gangliosides activated NF-kappaB, and N-acetyl cystein, an inhibitor of NF-kappaB, reduced NO release. These results suggest that gangliosides could be a microglial activator that functions via activation of mitogen-activated protein kinase and NF-kappaB.  相似文献   

11.
12.
Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration.  相似文献   

13.
Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E(2) and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia co-cultures. This was probably mediated via microglia as it did not affect TNF-alpha-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.  相似文献   

14.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   

15.
The inflammatory response in the brain is closely associated with the pathogenesis of degenerative neurological disorders. A role for the p38 stress-activated protein kinase/MAPK-activated protein kinase 2 (MK2) axis in inflammation and apoptosis is well documented. Here, we provide evidence that neurodegeneration can be prevented by eliminating MK2. In primary mesencephalic neuron-glia co-cultures dopaminergic neurons from MK2-deficient (MK2−/−) mice were significantly more resistant to lipopolysaccharide-induced neurotoxicity compared with cells from wild-type mice. This neuroprotection in MK2-deficient cultures was associated with a reduced inflammatory response, especially with reduced production of the inflammatory mediators tumor necrosis factor alpha, keratinocyte-derived chemokine, interleukin-6, and nitric oxide (NO). Interestingly, in primary neuron-enriched cell cultures p38 MAPK, but not MK2, also participates in NO-mediated neuronal cell death. In the MPTP mouse model for Parkinson's disease, MK2-deficient mice show a reduced neuroinflammation and less degeneration of dopaminergic neurons in the substantia nigra after MPTP lesion compared with wild-type mice. In conclusion, our results reveal that MK2 does not directly participate in neuronal cell death, but indirectly contributes to neurodegeneration by the production of neurotoxic substances, such as NO or tumor necrosis factor alpha, from activated glia cells.  相似文献   

16.
Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-alpha (TNF-alpha) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-alpha is relatively weak, because TNF-alpha also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-alpha exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-alpha is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.  相似文献   

17.
Brain lesions in Alzheimer's disease (AD) include amyloid plaques made of Aβ peptides and neurofibrillary tangles composed of hyperphosphorylated tau protein with synaptic and neuronal loss and neuroinflammation. Aβ oligomers can trigger tau phosphorylation and neuronal alterations through activation of neuronal kinases leading to progressive cognitive decline. PKR is a ubiquitous pro‐apoptotic serine/threonine kinase, and levels of activated PKR are increased in AD brains and AD CSF. In addition, PKR regulates negatively memory formation in mice. To assess the role of PKR in an AD in vivo model, we crossed 5xFAD transgenic mice with PKR knockout (PKRKO) mice and we explored the contribution of PKR on cognition and brain lesions in the 5xFAD mouse model of AD as well as in neuron–microglia co‐cultures exposed to the innate immunity activator lipopolysaccharide (LPS). Nine‐month‐old double‐mutant mice revealed significantly improved memory consolidation with the new object location test, starmaze test, and elevated plus maze test as compared to 5xFAD mice. Brain amyloid accumulation and BACE1 levels were statistically decreased in double‐mutant mice. Apoptosis, neurodegeneration markers, and synaptic alterations were significantly reduced in double‐mutant mice as well as neuroinflammation markers such as microglial load and brain cytokine levels. Using cocultures, we found that PKR in neurons was essential for LPS microglia‐induced neuronal death. Our results demonstrate the clear involvement of PKR in abnormal spatial memory and brain lesions in the 5xFAD model and underline its interest as a target for neuroprotection in AD.  相似文献   

18.
The brain is a common metastatic site for various types of cancers, especially lung cancer. Patients with brain metastases have a poor prognosis in spite of radiotherapy and/or chemotherapy. It is postulated that immune cells in the brain may play a major role in cancer metastasis, dormancy, and relapse. Although microglia may serve as a major component in the brain immune system, the interaction between metastatic cancer cells and microglia is still largely unknown and remains to be elucidated. In this study, we have investigated microglial reactions in brain tissues with metastatic lung cancer cells and evaluated the cytotoxic effects of lipopolysaccharide (LPS)-activated microglia on metastatic lung cancer cells in vitro. In the vicinity of metastatic lung cancer mass in the brain, microglia showed signs of significant activation. There was an obvious increase in the number of microglia labeled with ionized calcium binding adaptor molecule 1 (Iba-1) antibody, a specific marker of microglia. The microglia were observed to form a clear boundary between the tumor mass and normal brain tissue. In the region where the tumor mass was situated, only a few microglia expressed inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha), indicating differential activation in those microglia. The supernatant from LPS-activated microglia induced apoptosis of metastatic lung cancer cells in vitro in a dose- and time-dependent manner. However, at lower concentrations of activated microglial supernatant, trophic effects on cancer cells were observed, some lung cancer cells being insensitive to microglial cytotoxicity. Together with the observation that TNF-alpha alone induced proliferation of the tumor cells, the findings provide possible clues to the mechanism involved in metastasis of lung cancer cells to the brain.  相似文献   

19.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

20.
Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO‐1) influences BV‐2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO‐1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptosis‐induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS‐activated microglia inhibited neurite elongation of human neurons without requiring direct cell–cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO‐1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 854–876, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号