首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophysiological studies using the patch‐clamp technique were performed on isolated vacuoles from leaf mesophyll cells of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana to characterize the malate transport system responsible for nocturnal malic acid accumulation. In the presence of malate on both sides of the membrane, the current–voltage relations of the tonoplast were dominated by a strongly inward‐rectifying anion‐selective channel that was active at cytoplasmic‐side negative voltages. Rectification of the macroscopic conductance was reflected in the voltage‐dependent gating of a 3‐pS malate‐selective ion channel, which showed a half‐maximal open probability at ?43 mV. Also, the time‐averaged unitary currents following a step to a negative voltage corresponded to the time‐dependent kinetics of the macroscopic currents, suggesting that the activity of this channel underlies the anion‐selective inward rectifier. The inward rectifier showed saturation kinetics with respect to malate (apparent Km of 2.5 mm malate2? activity), a selectivity sequence of fumarate2? > malate2? > Cl? > maleate2– ≈ citrate3–, and greater activity at higher pH values (with an apparent pK of 7.1 and maximum activity at around pH 8.0). All these properties were in close agreement with the characteristics of malate transport observed in isolated tonoplast vesicles. Further, 100 µm niflumate reversibly blocked the activity of the 3‐pS channel and inhibited both macroscopic currents and malate transport into tonoplast vesicles to the same extent. The macroscopic current densities recorded at physiological voltages and the estimated channel density of 0.2 µm?2 are sufficient to account for the observed rates of nocturnal malic acid accumulation in this CAM plant, suggesting that the 3‐pS, inward‐rectifying, anion‐selective channel represents the principal pathway for malate influx into the vacuole.  相似文献   

2.
M Sato  K Inoue    M Kasai 《Biophysical journal》1992,63(6):1500-1505
An anion selective channel and three types of cation selective channels were found in planar lipid bilayers incorporating synaptic vesicles from rat brains. In asymmetric KCl solutions (cis: 300 mM/trans: 150 mM), the anion selective channel showed a single-channel conductance of 94 pS and was inactivated by negative voltages and by 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid disodium salt (SITS). In the same solution, single-channel conductances of three types of cation selective channels were 250 pS (Type 1), 248 pS (Type 2), and 213 pS (Type 3), respectively. These channels resembled one another in single-channel conductances but were different in gating behaviors. Type 1 channel, which was most frequently observed, had a remarkable subconducting state (175 pS). Type 2 channel had a flickering state that increased as the potential became more positive, and a long inactive state that increased as the potentials were more negative. Type 3 channel, which was also sensitive to the potentials, had the open-channel probability increased as the potential became more positive.  相似文献   

3.
Cholinergic synaptic vesicles were isolated from the electric organ of Torpedo californica. Vesicle membrane proteins were reconstituted into planar lipid bilayers by the nystatin/ergosterol fusion technique. After fusion, a variety of ion channels were observed. Here we identify four channels and describe two of them in detail. The two channels share a conductance of 13 pS. The first is anion selective and strongly voltage dependent, with a 50% open probability at membrane potentials of -15 mV. The second channel is slightly cation selective and voltage independent. It has a high open probability and a subconductance state. A third channel has a conductance of 4-7 pS, similar to the subconductance state of the second channel. This channel is fairly nonselective and has gating kinetics different from those of the cation channel. Finally, an approximately 10-pS, slightly cation selective channel was also observed. The data indicate that there are one or two copies of each of the above channels in every synaptic vesicle, for a total of six channels per vesicle. These observations confirm the existence of ion channels in synaptic vesicle membranes. It is hypothesized that these channels are involved in vesicle recycling and filling.  相似文献   

4.
Anion channels in the plasma membrane of both plant and animal cells participate in a number of important cellular functions such as volume regulation, trans-epithelial transport, stabilization of the membrane potential and excitability. Only very recently attention has turned to the presence of anion channels in higher plant cells. A dominant theme among recent discoveries is the role of Ca2+ in activating or modulating channel current involved in signal transduction. The major anion channel of stomatal guard cell protoplasts is a 32-40 pS channel which is highly selective for anions, in particular NO3-, Cl- and malate. These channels are characterized by a steep voltage dependence. Anion release is elicited upon depolarization and restricted to a narrow voltage span of -100 mV to the reversal potential of anions. During prolonged activation the current slowly inactivates. A rise in cytoplasmic calcium in the presence of nucleotides evokes activation of the anion channels. Following activation they catalyse anion currents 10-20 times higher than in the inactivated state thereby shifting the resting potential of the guard cell from a K(+)-conducting to an anion-conducting state. Patch-clamp studies have also revealed that growth hormones directly affect voltage-dependent activity of the anion channel in a dose-dependent manner. Auxin binding resulted in a shift of the activation potential towards the resting potential. Auxin-dependent gating of the anion channel is side- and hormone-specific. Its action is also channel-specific as K+ channels coexisting in the same membrane patch were insensitive to this ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fluctuations in intravacuolar chloride concentrations affected the tonoplast inward (anion flux into the vacuole) currents of sugar beets (Beta vulgaris). Rising vacuolar chloride concentrations induced increases in the levels of nitrate, acetate and phosphate inward currents. These currents, evoked at physiological vacuolar potentials, showed a linear relationship with the concentration of vacuolar chloride between 6 and 100 mm. Single channel currents revealed that rises in vacuolar chloride increased the frequency and probability of channel openings at a given tonoplast potential by reducing the mean closed time of the anion channel. In addition, there was an increase in the gating charge for the channel and a decrease in the free-energy favoring the transition of the channel from the closed to the open state. Vacuolar chloride had a very different effect on malate currents. Increasing chloride concentrations resulted in decreased frequency and open probability of the channel openings, a decrease in the gating charge and an increase in the mean closed time of the channel. Our results support the role for vacuolar chloride concentrations regulating the influx of anions into the vacuole, in addition to osmoregulation. The activation of channel activity by chloride will provide a pathway for the storage of nutrients, such as nitrate and phosphate into the vacuole, while the reduction of the malate currents will allow the use of malate for mitochondrial oxidation and cytoplasmic pH control.This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

6.
The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from electrostatics calculations carried out on the recently determined high-resolution structure of murine VDAC1 (mVDAC1). Poisson-Boltzmann calculations show that the ion transfer free energy through the channel is favorable for anions, suggesting that mVDAC1 represents the open state. This claim is buttressed by Poisson-Nernst-Planck calculations that predict a high single-channel conductance indicative of the open state and an anion selectivity of 1.75—nearly a twofold selectivity for anions over cations. These calculations were repeated on mutant channels and gave selectivity changes in accord with experimental observations. We were then able to engineer an in silico mutant channel with three point mutations that converted mVDAC1 into a channel with a preference for cations. Finally, we investigated two proposals for how the channel gates between the open and the closed state. Both models involve the movement of the N-terminal helix, but neither motion produced the observed voltage sensitivity, nor did either model result in a cation-selective channel, which is observed experimentally. Thus, we were able to rule out certain models for channel gating, but the true motion has yet to be determined.  相似文献   

7.
In higher plants the vacuolar K(+)-selective (VK) channel was identified solely in guard cells. This patch-clamp study describes a 40 pS homologue of the VK channel in Beta vulgaris taproot vacuoles. This voltage-independent channel is activated by submicromolar Ca(2+), and is ideally selective for K(+) over Cl(-) and Na(+).  相似文献   

8.
Summary Vesicles of inner mitochondrial membrane, mitoplasts, from rat brown adipose tissue were prepared by osmotic swelling and studied using the patch-clamp technique. Current events of a 107.8±8.7 pS (n=16, 21°C) channel were recorded in the mitoplast-attached mode. This channel was selective for anions and its kinetics resembled those of channels previously found in liver and heart mitochondria of mouse and ox. In whole-mitoplast mode each of five purine nucleotides (20 m) blocked the channel. This is the first demonstration of pharmacological blockade of this type of channel. Although a similar anion channel in mouse and ox mitochondria was suggested to be the uncoupling protein (UCP) associated with nonshivering thermogenesis, we present several arguments against this possibility. Thus we describe a high-conductance, purine-nucleotide-binding, anion selective mitochondrial channel, that is not the UCP.  相似文献   

9.
The presence of Al(3+) in the rhizosphere induces citrate efflux from the root apex of the Al-tolerant maize (Zea mays) hybrid South American 3, consequently chelating and reducing the activity of toxic Al(3+) at the root surface. Because citrate is released from root apical cells as the deprotonated anion, we used the patch-clamp technique in protoplasts isolated from the terminal 5 mm of the root to study the plasma membrane ion transporters that could be involved in Al-tolerance and Al-toxicity responses. Acidification of the extracellular environment stimulated inward K(+) currents while inhibiting outward K(+) currents. Addition of extracellular Al(3+) inhibited the remaining K(+) outward currents, blocked the K(+) inward current, and caused the activation of an inward Cl(-) current (anion efflux). Studies with excised membrane patches revealed the existence of Al-dependent anion channels, which were highly selective for anions over cations. Our success in activating this channel with extracellular Al(3+) in membrane patches excised prior to any Al(3+) exposure indicates that the machinery required for Al(3+) activation of this channel, and consequently the whole root Al(3+) response, is localized to the root-cell plasma membrane. This Al(3+)-activated anion channel may also be permeable to organic acids, thus mediating the Al-tolerance response (i.e. Al-induced organic acid exudation) observed in intact maize root apices.  相似文献   

10.
Guard cell anion channels (GCAC1) catalyze the release of anions across the plasma membrane during regulated volume decrease and also seem to be involved in the targeting of the plant growth hormones auxins. We have analyzed the modulation and inhibition of these voltage-dependent anion channels by different anion channel blockers. Ethacrynic acid, a structural correlate of an auxin, caused a shift in activation potential and simultaneously a transient increase in the peak current amplitude, whereas other blockers shifted and blocked the voltage-dependent activity of the channel. Comparison of dose-response curves for shift and block imposed by the inhibitor, indicate two different sites within the channel which interact with the ligand. The capability to inhibit GCAC1 increases in a dose-dependent manner in the sequence: probenecid less than A-9-C less than ethacrynic acid less than niflumic acid less than IAA-94 less than NPPB. All inhibitors reversibly blocked the anion channel from the extracellular side. Channel block on the level of single anion channels is characterized by a reduction of long open transitions into flickering bursts, indicating an interaction with the open mouth of the channel. IAA-23, a structural analog of IAA-94, was used to enrich ligand-binding polypeptides from the plasma membrane of guard cells by IAA-23 affinity chromatography. From this protein fraction a 60 kDa polypeptide crossreacted specifically with polyclonal antibodies raised against anion channels isolated from kidney membranes. In contrast to guard cells, mesophyll plasma membranes were deficient in voltage-dependent anion channels and lacked crossreactivity with the antibody.  相似文献   

11.
The mitochondrial channel VDAC has a cation-selective open state   总被引:2,自引:0,他引:2  
The mitochondrial channel VDAC is known to have two major classes of functional states, a large conductance "open" state that is anion selective, and lower conductance substates that are cation selective. The channel can reversibly switch between open and half-open states, with the latter predominant at increasing membrane voltages of either polarity. We report the presence of a new functional state of VDAC, a cation-selective state with conductance approximately equal to that of the canonical open state. This newly described state of VDAC can be reached from either the half-open cation-selective state or from the open anion-selective state. The latter transition implies that a mechanism exists for selectivity gating in VDAC that is separate from partial closure, which may be relevant to the physiological regulation of this channel and mitochondrial outer membrane permeability.  相似文献   

12.
Cell swelling activates an outwardly rectifying anion current in numerous mammalian cell types. An extensive body of evidence indicates that the channel responsible for this current is the major pathway for volume regulatory organic osmolyte loss. Cell swelling also activates an outwardly rectifying anion current in Xenopus oocytes. Unlike mammalian cells, oocytes allow the direct study of both swelling-activated anion current and organic osmolyte efflux under nearly identical experimental conditions. We therefore exploited the unique properties of oocytes in order to examine further the relationship between anion channel activity and swelling-activated organic osmolyte transport. Swelling-activated anion current and organic osmolyte efflux were studied in parallel in batches of oocytes obtained from single frogs. The magnitude of swelling-activated anion current and organic osmolyte efflux exhibited a positive linear correlation. In addition, the two processes had similar pharmacological characteristics and activation, rundown and reactivation kinetics. The present study provides further strong support for the concept that the channel responsible for swelling-activated Cl efflux and the outwardly rectifying anion conductance is also the major pathway by which organic osmolytes are lost from vertebrate cells during regulatory volume decrease. Received: 22 April 1996/Revised: 18 December 1996  相似文献   

13.
Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase   总被引:1,自引:0,他引:1  
We have recently demonstrated that voltage dependent anion selective channel~1 (porin, isoform 1) can function as a transplasma membrane NADH:ferricyanide-reductase. However, both the specific redox characteristics and the mechanism of electron transport in this enzyme presently remain unclear. Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro. Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate. However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer. We propose a model on how electron transport may occur in VDAC1.  相似文献   

14.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

15.
Summary Patch-clamp studies of single ion channel currents in freshly isolated murine B lymphocytes are characterized here according to their respective unitary conductances, ion selectivities, regulatory factors, distributions and kinetic behavior. The most prevalent ion channel in murine B lymphocytes is a large conductance (348 pS) nonselective anion channel. This report characterizes additional conductances including: two chloride channels (40 and 128 pS), a calcium-activated potassium channel (93 pS), and an outwardly rectifying potassium channel which displays two distinct conductances (18 and 30 pS). Like the anion channel, both chloride channels exhibit little activity in the cellattached patch configuration. The kinetic behavior of all of these channels is complex, with variable periods of bursting and flickering activity interspersed between prolonged closed/open intervals (dwell times). It is likely that some of these channels play an important role in the signal transduction of B cell activation.  相似文献   

16.
Ion channels from corn root microsomes were reconstituted inlipid bilayers, either black lipid membranes (BLM), or at thetip of microelectrodes, and their electrical activity characterized.Two reconstitution procedures were developped with BLM: thespontaneous detergent-mediated insertion of proteins from asuspension of ammonium sulphate precipitated proteins, a methodwhich we recently showed to work for the functional reconstitutionof the (H+)ATPase of plasma membrane, and the BLM formationmethod first developped by Schindler [(1980) FEBS Lett. 122:77], starting from giant proteoliposomes prepared by fusingmicrosomal vesicles with asolectin large unilamellar vesiclesvia a freeze-thaw treatment. The presence of proteins in boththe giant vesicles and the membrane forming monolayers was checked.The giant proteoliposomes were also suitable for patch-clampmeasurements via the "dip-tip" technique. We describe the voltage-dependentproperties of the channel which was routinely reconstitutedin BLM by the two methods, and we report new data concerninganother channel which was highly anion selective as evidencedby the dip-tip technique. (Received January 9, 1992; Accepted April 28, 1992)  相似文献   

17.
p64 is a protein identified as a chloride channel by biochemical purification from kidney microsomes. We expressed p64 in HeLa cells using a recombinant vaccinia virus/T7 RNA polymerase driven system. Total cell membranes were prepared from infected/transfected cells and fused to a planar lipid bilayer. A novel chloride channel activity was found in cells expressing p64 and not in control cells. The p64-associated activity shows strong anion over cation selectivity. Single channels show prominent outward rectification with single channel conductance at positive potentials of 42 pS. The chloride channel activity is activated by treatment of the membranes with alkaline phosphatase and inhibited by DNDS and by TS-TM calix(4)arene. Whole membrane anion permeability was determined by a chloride efflux assay, revealing that membranes from cells expressing p64 showed a small but highly significant increase in chloride permeability, consistent with expression of a novel chloride channel activity. Received: 17 November 1997/Revised: 9 February 1998  相似文献   

18.
The interaction with erythrocytes of cholera cytolysin (CC) obtained from a non-01 Vibrio cholerae strain results in the osmotic rupture of target cells upon formation by CC of the waterfilled pores in their membranes. The aggregation of several toxin monomers is required for the formation of one CC channel with a radius of 0.9-1.0 nm. The investigations using planar bilayer lipid membranes suggest that the CC-induced pore is an interprotein anion selective channel carrying a fixed positive charge. The role of the charge was supported by the influence of pH on the selectivity, single conductance and voltage gating of the CC channels. The ability of the CC to modify both model and natural membranes has a maximum at pH 6.0-7.0. It was found that CC channels insert into the membrane asymmetrically. The effect of proteolytic treatment of the channel by papain also indicates that the two entrances of the channel protrude from the plane of the membrane into the solution for different distances. It is proposed that the biological effects of the non-01 V. cholera cytolysin are based on its channel-forming activity.  相似文献   

19.
Removal of nitrite and nitrate from drinking water has attracted great attention in recent years because of the human health risk induced by the exposure to contaminated groundwater and surface water. We have therefore tested a model nitrite oxidation system by coentrapping the NaNO2 oxidizer Nitrobacter vulgaris with polydimethylsiloxane (PDMS) copolymer and DEAE-Sephadex in a polyacrylamide gel. The copolymer and the anion exchanger facilitate the diffusion of oxygen and NaNO2, respectively, into the gel matrix. To test the nitrite-oxidizing activity, the entrapped cells were coupled to a thermal sensor. Coentrapment of 5% (wt/vol) DEAE-Sephadex with Nitrobacter vulgaris increased the nitrite-oxidizing activity by a factor of 3.7 compared to entrapped cells alone, and by the addition of 0.86% (wt/vol) artificial oxygen carrier PDMS copolymer increased the activity further to 4.3 times higher. Operational and storage stability of the coentrapped N.vulgaris also improved. This suggests that this enhanced immobilized cell system can also be used for nitrite oxidation to nitrate in drinking water as an on-line thermally monitored bioreactor.  相似文献   

20.
A novel terpenoid, cydonioside A (1), was isolated from the fruits of Cydonia vulgaris Pers. Its structure and relative configuration were elucidated on the basis of in-depth spectroscopic analyses, including 2D-NMR experiments as well as MM+ calculations. Compound 1 was assayed for its radical-scavenging activity towards the DPPH radical and the superoxide radical anion (O2*-), as well as for its overall antioxidant activity, as assessed by the formation of a phosphomolybdenum complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号