首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biochemical bases for the differences in cone and rod photoreceptor physiology have not been thoroughly examined because of the difficulty in obtaining cone photoreceptor components. We report here the purification and preliminary characterization of a bovine cyclic GMP phosphodiesterase (PDE) which is enriched in cone photoreceptors. The cone PDE was purified at least 15,000-fold to apparent homogeneity from bovine retinas by DEAE-cellulose and cGMP-Sepharose affinity chromatography. The trypsin-activated cone PDE hydrolyzed cGMP with efficiency similar to that of the rod PDE. However, a number of characteristics distinguished the cone PDE from the rod isozyme including the subunit structure. As previously reported, the apparent molecular weight of the cone PDE large subunit (alpha') was slightly larger than either of the large subunits of the rod PDE (93,500 versus 88,000 and 84,000). Three other smaller polypeptides were associated with the alpha' subunit (Mr = 11,000, 13,000, and 15,000), one of which (11,000) may be identical to the rod PDE gamma subunit. Cone phosphodiesterase binds at least 10-fold more cyclic GMP/mol of PDE than the rod photoreceptor isozyme. Cyclic GMP binds to this noncatalytic site with high affinity (Kd = 11 nM) and dissociates very slowly (t1/2 = 10-20 min at 37 degrees C). Purified rod transducin activated the cone PDE in solution to at least 90% of the trypsin-activated level. The concentration of rod transducin required for half-maximal activation of cone PDE (15 nM) was 50-fold lower than that necessary for half-maximal activation of rod PDE. Thus several properties of the cone phosphodiesterase clearly distinguish it from the rod isozyme and could account for some differences in cone and rod physiology.  相似文献   

2.
R L Brown 《Biochemistry》1992,31(25):5918-5925
In the dark, the activity of the cGMP phosphodiesterase (PDE) of retinal rod outer segments is held in check by its two inhibitory gamma subunits. Following illumination, gamma is rapidly removed from its inhibitory site by transducin, the G-protein of the visual system. In order to probe the functional roles of specific regions in the PDE gamma primary sequence, 10 variants of PDE gamma have been produced by site-specific mutagenesis and expression in bacteria and their properties compared to those of protein containing the wild-type bovine PDE gamma amino acid sequence. Three questions were asked about each mutant: What is its affinity for the alpha beta catalytic subunit of PDE? Does it inhibit catalytic activity? If so, can transducin relieve this inhibition? Binding to PDE alpha beta was determined directly using fluorescein-labeled gamma by measuring the increase in emission anisotropy that occurs when gamma binds to alpha beta. Inhibition of PDE alpha beta was measured by reconstitution of the gamma variants with gamma-free PDE generated by limited digestion with trypsin or endoproteinase Arg-C. Unlike trypsin, the latter enzyme did not remove PDE's ability to bind membranes and be activated by transducin, so that transducin activation of PDE containing specific gamma variants could be assayed directly. The results indicate that mutations in many regions of gamma affect its binding to alpha beta. A mutant missing the last five carboxy-terminal residues (83-87) was totally lacking in inhibitory activity. However, it still bound to PDE alpha beta tightly, although with a 100-fold lower dissociation constant (approximately 5 nM) than that of wild-type gamma (approximately 50 pM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Detergent-resistant membrane microdomains in the plasma membrane, known as lipid rafts, have been implicated in various cellular processes. We report here that a low-density Triton X-100-insoluble membrane (detergent-resistant membrane; DRM) fraction is present in bovine rod photoreceptor outer segments (ROS). In dark-adapted ROS, transducin and most of cGMP-phosphodiesterase (PDE) were detergent-soluble. When ROS membranes were exposed to light, however, a large portion of transducin localized in the DRM fraction. Furthermore, on addition of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to light-bleached ROS, transducin became detergent-soluble again. PDE was not recruited to the DRM fraction after light stimulus alone, but simultaneous stimulation by light and GTPgammaS induced a massive translocation of all PDE subunits to the DRM. A cholesterol-removing reagent, methyl-beta-cyclodextrin, selectively but partially solubilized PDE from the DRM, suggesting that cholesterol contributes, at least in part, to the association of PDE with the DRM. By contrast, transducin was not extracted by the depletion of cholesterol. These data suggest that transducin and PDE are likely to perform their functions in phototransduction by changing their localization between two distinct lipid phases, rafts and surrounding fluid membrane, on disc membranes in an activation-dependent manner.  相似文献   

4.
Cyclic GMP hydrolysis by the phosphodiesterase (PDE) of retinal rod outer segments (ROS) is a key amplification step in phototransduction. Definitive estimates of the turnover number, kcat, and of the Km are crucial to quantifying the amplification contributed by the PDE. Published estimates for these kinetic parameters vary widely; moreover, light-dependent changes in the Km of PDE have been reported. The experiments and analyses reported here account for most observed variations in apparent Km, and they lead to definitive estimates of the intrinsic kinetic parameters in amphibian rods. We first obtained a new and highly accurate estimate of the ratio of holo-PDE to rhodopsin in the amphibian ROS, 1:270. We then estimated the apparent kinetic parameters of light-activated PDE of suspensions of disrupted frog ROS whose structural integrity was systematically varied. In the most severely disrupted ROS preparation, we found Km = 95 microM and kcat = 4,400 cGMP.s-1. In suspensions of disc-stack fragments of greater integrity, the apparent Km increased to approximately 600 microM, though kcat remained unchanged. In contrast, the Km for cAMP was not shifted in the disc stack preparations. A theoretical analysis shows that the elevated apparent Km of suspensions of disc stacks can be explained as a consequence of diffusion with hydrolysis in the disc stack, which causes active PDEs nearer the center of the stack to be exposed to a lower concentration of cyclic GMP than PDEs at the disc stack rim. The analysis predicts our observation that the apparent Km for cGMP is elevated with no accompanying decrease in kcat. The analysis also predicts the lack of a Km shift for cAMP and the previously reported light dependence of the apparent Km for cGMP. We conclude that the intrinsic kinetic parameters of the PDE do not vary with light or structural integrity, and are those of the most severely disrupted disc stacks.  相似文献   

5.
The light-activated cyclic GMP phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed in isolated outer segments suspended in a low-calcium Ringer's solution. Activation occurs over a range of light intensity that also causes a decrease in the permeability, cyclic GMP levels, and GTP levels of isolated outer segments. At intermediate intensities, PDE activity assumes constant intermediate values determined by the rate of rhodopsin bleaching. Washing causes an increase in maximal enzyme activity. Increasing light intensity from darkness to a level bleaching 5 x 10(3) rhodopsin molecules per outer segment per second shifts the apparent Michaelis constant (Km) from 100 to 900 microM. Maximum enzyme velocity increases at least 10-fold. The component that normally regulates this light- induced increase in the Km of PDE is removed by the customary sucrose flotation procedures. The presence of 10(-3) M Ca++ increases the light sensitivity of PDE, and maximal activation is caused by illumination bleaching only 5 x 10(2) rhodopsin molecules per outer segment per second. Calcium acts by increasing enzyme velocity while having little influence on Km. The effect of calcium appears to require a labile component, sensitive to aging of the outer segment preparation. The decrease in the light sensitivity of PDE that can be observed upon lowering the calcium concentration may be related to the desensitization of the permeability change mechanism that occurs during light adaptation of rod photoreceptors.  相似文献   

6.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

7.
Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.  相似文献   

8.
Cones are less light-sensitive than rods. We showed previously in carp that more light (>100-fold) is required in cones than in rods to activate 50% of cGMP phosphodiesterase (PDE). The lower effectiveness of PDE activation in carp cones is due partly to the fact that the activation rate of transducin (Tr) by light-activated visual pigment (R*) is 5-fold lower in carp cones than in rods. In this study, we tried to explain the remaining difference. First, we examined the efficiency of activation of PDE by activated Tr (Tr*). By activating PDE with known concentrations of the active (guanosine 5′-Ο-(γ-thio)triphosphate (GTPγS)-bound) form of Tr*, we found that Tr* activated PDE at a similar efficiency in rods and cones. Next, we examined the contribution of R* and Tr* lifetimes. In a comparison of PDE activation in the presence (with GTP) and absence (with GTPγS) of Tr* inactivation, PDE activation required more light (and was therefore less effective) when Tr* was inactivated in both rod and cone membranes. This is probably because inactivation of Tr* shortened its lifetime, thereby reducing the number of activated PDE molecules. The effect of Tr* inactivation was larger in cones, probably because the lifetime of Tr* is shorter in cones than in rods. The shorter lifetimes of Tr* and R* in cones seem to explain the remaining difference in the effectiveness of PDE activation between rods and cones.  相似文献   

9.
The delta subunit of the rod photoreceptor PDE has previously been shown to copurify with the soluble form of the enzyme and to solubilize the membrane-bound form (). To determine the physiological effect of the delta subunit on the light response of bovine rod outer segments, we measured the real time accumulation of the products of cGMP hydrolysis in a preparation of permeablized rod outer segments. The addition of delta subunit GST fusion protein (delta-GST) to this preparation caused a reduction in the maximal rate of cGMP hydrolysis in response to light. The maximal reduction of the light response was about 80%, and the half-maximal effect occurred at 385 nm delta subunit. Several experiments suggest that this effect was not due to the effects of delta-GST on transducin or rhodopsin kinase. Immunoblots demonstrated that exogenous delta-GST solubilized the majority of the PDE in ROS but did not affect the solubility of transducin. Therefore, changes in the solubility of transducin cannot account for the effects of delta-GST in the pH assay. The reduction in cGMP hydrolysis was independent of ATP, which indicates that it was not due to effects of delta-GST on rhodopsin kinase. In addition to the effect on cGMP hydrolysis, the delta-GST fusion protein slowed the turn-off of the system. This is probably due, at least in part, to an observed reduction in the GTPase rate of transducin in the presence of delta-GST. These results demonstrate that delta-GST can modify the activity of the phototransduction cascade in preparations of broken rod outer segments, probably due to a functional uncoupling of the transducin to PDE step of the signal transduction cascade and suggest that the delta subunit may play a similar role in the intact outer segment.  相似文献   

10.
J A Malinski  T G Wensel 《Biochemistry》1992,31(39):9502-9512
To clarify the role of phospholipids in G protein-effector interactions of vertebrate phototransduction, transducin activation of cGMP phosphodiesterase (PDE) has been reconstituted on the surface of well-defined phosphatidylcholine (PC) vesicles, using purified proteins from bovine rod outer segments (ROS). PC vesicles enhanced PDE stimulation by the GTP-gamma S-bound transducin alpha subunit (T alpha-GTP gamma S) as much as 17-fold over activation in the absence of membranes. In the presence of 3.5 microM accessible PC in the form of large (100 nm) unilamellar vesicles, 500 nM T alpha-GTP gamma S stimulated PDE activity to more than 70% of the maximum activity induced by trypsin. Activation required PC, PDE, and T alpha-GTP gamma S, but did not require prior incubation of any of the components, and occurred within 4 s of mixing. The PC vesicles were somewhat more efficient than urea-washed ROS membranes in enhancing PDE activation. Half-maximal activation occurred at accessible phospholipid concentrations of 3.8 microM for PC vesicles, and 13 microM for ROS membranes. Titrations of PDE with T alpha-GTP gamma S in the presence of membranes indicated a high-affinity (Kact less than 250 pM) activation of PDE by a small fraction (0.5-5%) of active T alpha-GTP gamma S, as did titrations of ROS with GTP gamma S. When activation by PC vesicles was compared to PDE binding to membranes, the results were consistent with activation enhancement resulting from formation of a T alpha-GTP gamma S-dependent PDE-membrane complex with half-maximal binding at phospholipid concentrations in the micromolar range. The value of the apparent dissociation constant, KPL, associated with the activation enhancement was estimated to be in the range of 2.5 nM (assuming an upper limit value of 1600 phospholipids/site) to 80 nM (for a lower limit value of 50 phospholipids/site). Another component of membrane binding was more than 100-fold weaker and was not correlated with activation by T alpha-GTP gamma S. Low ionic strength disrupted the ability of ROS membranes, but not PC vesicles, to bind and activate PDE. Removal of PDE's membrane-binding domain by limited trypsin digestion eliminated both the binding of PDE to vesicles and the ability of PDE to be activated by T alpha-GTP gamma S and membranes. These results suggest that ROS membrane stimulation of PDE activation by T alpha-GTP gamma S is due almost exclusively to the phospholipids in the disk membrane.  相似文献   

11.
Phosphorylation of the inhibitory gamma subunit (Pgamma) of rod cGMP phosphodiesterase (PDE6) has been reported to turn off visual excitation without the requirement for inactivation of the photoreceptor G-protein transducin. We evaluated the significance of Pgamma phosphorylation for PDE6 regulation by preparing Pgamma stoichiometrically phosphorylated at Thr(22) or at Thr(35). Phosphorylation of Pgamma at either residue caused a minor decrease--not the previously reported increase--in the ability of Pgamma to inhibit catalysis at the active site of purified PDE6 catalytic dimers. Likewise, Pgamma phosphorylation had little effect on its potency to inhibit transducin-activated PDE6 depleted of its endogenous Pgamma subunits. The strength of Pgamma interaction with the regulatory GAF domain of PDE6 was reduced severalfold upon Pgamma phosphorylation at Thr(22) (but not Thr(35)), as judged by allosteric changes in cGMP binding to these noncatalytic sites on the enzyme (Mou, H., and Cote, R. H. (2001) J. Biol. Chem. 276, 27527-27534). In contrast, the effects of Pgamma phosphorylation on its interactions with activated transducin were much more pronounced. Phosphorylation of Pgamma at either Thr(22) or Thr(35) greatly diminished its ability to bind activated transducin, consistent with earlier work. In situ phosphorylation of Pgamma by endogenous rod outer segment kinases was enhanced severalfold upon light activation, but only approximately 10% of the endogenous Pgamma was phosphorylated. This is attributed to Pgamma being a poor substrate for protein kinases when associated with the PDE6 holoenzyme. We conclude that, contrary to previous reports, Pgamma phosphorylation at either Thr(22) or Thr(35) modestly weakens its direct interactions with PDE6. However, Pgamma phosphorylation subsequent to its dissociation from PDE6 is likely to abolish its binding to activated transducin and may serve to make phosphorylated Pgamma available to regulate other signal transduction pathways (e.g. mitogen-activated protein kinase; Wan, K. F., Sambi, B. S., Frame, M., Tate, R., and Pyne, N. J. (2001) J. Biol. Chem. 276, 37802-37808) in photoreceptor cells.  相似文献   

12.
Light responses in photoreceptor cells are mediated by the action of the G protein transducin (G(t)) on the effector enzyme cGMP phosphodiesterase (PDE6) at the surface of disk membranes. The enzymatic components needed for phosphoinositide-based signaling are known to be present in rod cells, but it has remained uncertain what role phosphoinositides play in vertebrate phototransduction. Reconstitution of PDE6 and activated G(alphat), on the surface of large unilamellar vesicles containing d-myo-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), stimulated PDE activity nearly 4-fold above the level observed with membranes containing no phosphoinositides, whereas G protein-independent activation by trypsin was unaffected by the presence of phosphoinositides. PDE activity was similarly stimulated by d-myo-phosphatidylinositol-3,4-bisphosphate and d-myo-phosphatidylinositol-4-phosphate (PI(4)P), but much less by d-myo-phosphatidylinositol-5-phosphate (PI(5)P) or d-myo-phosphatidylinositol-3,5-bisphosphate. Incubation of rod outer segment membranes with phosphoinositide-specific phospholipase C decreased G protein-stimulated activation of endogenous PDE6, but not trypsin-stimulated PDE activity. Binding experiments using phosphoinositide-containing vesicles revealed patterns of PDE6 binding and PDE6-enhanced G(alphat)-GTPgammaS binding, consistent with the activation profile PI(4,5)P(2) > PI(4)P > PI(5)P approximately control vesicles. These results suggest that enhancement of effector-G protein interactions represents a possible mechanism for modulation of phototransduction gain by changes in phosphoinositide levels, perhaps occurring in response to longterm changes in illumination or other environmental cues.  相似文献   

13.
A phosphodiesterase (PDE) has been characterized in the interphotoreceptor matrix (IPM) of light-adapted fresh bovine retinas. It is obtained through a gentle rinsing of the retinal surface under conditions where the light-activated rod outer segment (ROS) enzyme remains attached. The enzyme has an apparent native molecular weight of 350 000 by gel filtration and appears as a doublet at Mr 47 000 and 45 000 on sodium dodecyl sulfate-polyacrylamide gels. It has an apparent Km value for cGMP of 33 microM and an apparent Km value for cAMP of 2200 microM. It is activated 3-6-fold by protamine and over 40-fold by trypsin. Protamine has no effect on the Km for cGMP while trypsin decreases the Km for cGMP by a factor of 2. The enzyme occurs in at least two forms as evidenced by two distinct peaks of activity after gel electrophoresis under nondenaturing conditions. A heat-stable inhibitor is tightly bound to the enzyme. The inhibitor obtained from the IPM PDE inhibits 98% of the activity of the trypsin-activated ROS PDE: conversely, the inhibitor obtained by boiling the ROS PDE completely inhibits the trypsin-activated IPM enzyme. A high-affinity monoclonal antibody to the active site of the ROS PDE, ROS 1 [Hurwitz, R., Bunt-Milan, A.H., & Beavo, J. (1984) J. Biol. Chem. 259, 8612-8618], quantitatively absorbs the IPM PDE. These observations indicate a clear relationship between these two PDEs even though their location, sizes, and specific functions in the retina appear to be distinct.  相似文献   

14.
Synthetic peptides corresponding to various regions of the light-activated guanosine 3',5'-cyclic monophosphate phosphodiesterase (PDE) gamma-subunit (PDE gamma) from bovine retinal rod outer segments were synthesized and tested for their ability to inhibit PDE activity, and GTPase activity of transducin. One of these peptides, corresponding to PDE gamma residues 31-45, inhibited PDE activity and GTPase activity in a dose-dependent manner. The GTPase activity was inhibited by PDE gamma-3 non-competitively. This region of the PDE gamma subunit may be involved in the direct interaction of transducin and PDE alpha beta with PDE gamma.  相似文献   

15.
Molecular origin of continuous dark noise in rod photoreceptors.   总被引:5,自引:0,他引:5       下载免费PDF全文
Noise in the rod photoreceptors limits the ability of the dark-adapted visual system to detect dim lights. We investigated the molecular mechanism of the continuous component of the electrical dark noise in toad rods. Membrane current was recorded from intact, isolated rods or truncated, internally dialyzed rod outer segments. The continuous noise was separated from noise due to thermal activation of rhodopsin and to transitions in the cGMP-activated channels. Selectively disabling different elements of the phototransduction cascade allowed examination of their contributions to the continuous noise. These experiments indicate that the noise is generated by spontaneous activation of cGMP phosphodiesterase (PDE) through a process that does not involve transducin. The addition of recombinant gamma, the inhibitory subunit of PDE, did not suppress the noise, indicating that endogenous gamma does not completely dissociate from the catalytic subunit of PDE during spontaneous activation. Quantitative analysis of the noise provided estimates of the rate constants for spontaneous PDE activation and deactivation and the catalytic activity of a single PDE molecule in situ.  相似文献   

16.
T G Wensel  L Stryer 《Proteins》1986,1(1):90-99
The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.  相似文献   

17.
The hydrolysis-resistant GTP analogue GTP-gamma-S was introduced into rods isolated from the retina of the salamander Ambystoma tigrinum to study the origin of the persistent excitation induced by intense bleaching illumination. Dialysis of a dark-adapted rod with a whole- cell patch pipette containing 2 mM GTP-gamma-S resulted in a gradual decrease in circulating current. If the rod was first bleached and its sensitivity allowed to stabilize for at least 30 min, then dialysis with GTP-gamma-S produced a much faster current decay. The circulating current could be restored by superfusion with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, suggesting that the decay in current originated from persistent excitation of the phosphodiesterase by transducin bound to GTP-gamma-S. We conclude that the persistent excitation which follows bleaching is likely to involve the GTP-binding protein transducin, which mediates the normal photoresponse. This observation suggests that a form of rhodopsin which persists long after bleaching can activate transducin much as does photoisomerized rhodopsin, although with considerably lower gain.  相似文献   

18.
Light-dependent redistribution of transducin between the rod outer segments (OS) and other photoreceptor compartments including the inner segments (IS) and synaptic terminals (ST) is recognized as a critical contributing factor to light and dark adaptation. The mechanisms of light-induced transducin translocation to the IS/ST and its return to the OS during dark adaptation are not well understood. We have probed these mechanisms by examining light-dependent localizations of the transducin-alpha subunit (Gtalpha)in mice lacking the photoreceptor GAP-protein RGS9, or expressing the GTPase-deficient mutant GtalphaQ200L. An illumination threshold for the Gtalpha movement out of the OS is lower in the RGS9 knockout mice, indicating that the fast inactivation of transducin in the wild-type mice limits its translocation to the IS/ST. Transgenic GtalphaQ200L mice have significantly diminished levels of proteins involved in cGMP metabolism in rods, most notably the PDE6 catalytic subunits, and severely reduced sensitivity to light. Similarly to the native Gtalpha, the GtalphaQ200L mutant is localized to the IS/ST compartment in light-adapted transgenic mice. However, the return of GtalphaQ200L to the OS during dark adaptation is markedly slower than normal. Thus, the light-dependent translocations of transducin are controlled by the GTP-hydrolysis on Gtalpha, and apparently, do not require Gtalpha interaction with RGS9 and PDE6.  相似文献   

19.
Transducin is the retinal rod outer segment (ROS)-specific G protein coupling the photoexcited rhodopsin to cyclic GMP-phosphodiesterase. The alpha subunit of transducin is known to be ADP-ribosylated by bacterial toxins. We investigated the possibility that transducin is modified in vitro by an endogenous ADP-ribosyltransferase activity. By using either ROS, cytosolic extract of ROS or purified transducin in the presence of [alpha-32P]nicotinamide adenine dinucleotide (NAD+), the alpha and beta subunits of transducin were found to be radiolabeled. The labeling was decreased by snake venom phosphodiesterase I (PDE I). The modification was shown to be mono ADP-ribosylation by analyses on thin layer chromatography of the PDE I-hydrolyzed products which revealed only 5'AMP residues. In addition we report that sodium nitroprusside activates the ADP-ribosylation of transducin.  相似文献   

20.
Phototransduction starts with the activation of a rhodopsin (respectively, coneopsin) molecule, located in the outer segment of rod (respectively, cone) photoreceptors. The subsequent amplification pathway proceeds via the G-protein transducin to the activation of phosphodiesterase (PDE), a G-protein coupled effector enzyme. In this article, we study the dynamics of PDE activation by constructing a Markov model that is based on the underlying chemical reactions including multiple rhodopsin phosphorylations. We derive explicit equations for the mean and the variance of activated PDE. Our analysis reveals that a low rhodopsin lifetime variance is neither necessary nor sufficient to achieve reliable PDE activation. The numerical simulations show that during the rising phase the variability of PDE activation is much lower compared to the recovery phase, and this property depends crucially on the transducin activation rates. Furthermore, we find that the dynamics of the activation process greatly differs depending on whether rhodopsin or PDE deactivation limits the recovery of the photoresponse. Finally, our simulations for cones show that only very few PDEs are activated by an excited photopigment, which might explain why in S-cones no single photon response can be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号