首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sanders CR  Mittendorf KF 《Biochemistry》2011,50(37):7858-7867
Membrane lipid composition can vary dramatically across the three domains of life and even within single organisms. Here we review evidence that the lipid-exposed surfaces of membrane proteins have generally evolved to maintain correct structure and function in the face of major changes in lipid composition. Such tolerance has allowed evolution to extensively remodel membrane lipid compositions during the emergence of new species without having to extensively remodel the associated membrane proteins. The tolerance of membrane proteins also permits single-cell organisms to vary their membrane lipid composition in response to their changing environments and allows dynamic and organelle-specific variations in the lipid compositions of eukaryotic cells. Membrane protein structural biology has greatly benefited from this seemingly intrinsic property of membrane proteins: the majority of structures determined to date have been characterized under model membrane conditions that little resemble those of native membranes. Nevertheless, with a few notable exceptions, most experimentally determined membrane protein structures appear, to a good approximation, to faithfully report on native structure.  相似文献   

2.
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane.  相似文献   

3.
Membrane protein structural biology is a frontier area of modern biomedical research. Twenty to thirty-five percent of the proteins encoded by an organism's genome are integral membrane proteins. Integral membrane proteins, such as channels, transporters, and receptors, are critical components of many fundamental biological processes. Also, many integral membrane proteins are important in biomedical and biotechnological applications; the majority of drug targets are integral membrane proteins. The sharp increase in the number of membrane protein structures over the last several years gives some indication that this field is poised for rather explosive growth as more and more investigators take on membrane protein projects. The purpose of this brief practical review was to take a snapshot of a field at the onset of its likely exponential growth phase, and to lay out the methods that have worked to date for obtaining membrane protein crystals suitable for structure determination by X-ray crystallography. Many of the successful experimental methods are identical to those used for soluble proteins. The major difference, and a non-trivial difference, is the necessity for inclusion of detergents above the critical micelle concentration in the purified membrane protein solution.  相似文献   

4.
Membrane proteins comprise up to one-third of prokaryotic and eukaryotic genomes, but only a very small number of membrane protein structures are known. Membrane proteins are challenging targets for structural biology, primarily due to the difficulty in producing and purifying milligram quantities of these proteins. We are evaluating different methods to produce and purify large numbers of prokaryotic membrane proteins for subsequent structural and functional analysis. Here, we present the comparative expression data for 37 target proteins, all of them secondary transporters, from the mesophilic organism Salmonella typhimurium and the two hyperthermophilic organisms Aquifex aeolicus and Pyrococcus furiosus in three different Escherichia coli expression vectors. In addition, we study the use of Lactococcus lactis as a host for integral membrane protein expression. Overall, 78% of the targets were successfully produced under at least one set of conditions. Analysis of these results allows us to assess the role of different variables in increasing "expression space" coverage for our set of targets. This analysis implies that to maximize the number of nonhomologous targets that are expressed, orthologous targets should be chosen and tested in two vectors with different types of promoters, using C-terminal tags. In addition, E. coli is shown to be a robust host for the expression of prokaryotic transporters, and is superior to L. lactis. These results therefore suggest appropriate strategies for high-throughput heterologous overproduction of membrane proteins.  相似文献   

5.
Membrane proteins control a large number of vital biological processes and are often medically important—not least as drug targets. However, membrane proteins are generally more difficult to work with than their globular counterparts, and as a consequence comparatively few high‐resolution structures are available. In any membrane protein structure project, a lot of effort is usually spent on obtaining a pure and stable protein preparation. The process commonly involves the expression of several constructs and homologs, followed by extraction in various detergents. This is normally a time‐consuming and highly iterative process since only one or a few conditions can be tested at a time. In this article, we describe a rapid screening protocol in a 96‐well format that largely mimics standard membrane protein purification procedures, but eliminates the ultracentrifugation and membrane preparation steps. Moreover, we show that the results are robustly translatable to large‐scale production of detergent‐solubilized protein for structural studies. We have applied this protocol to 60 proteins from an E. coli membrane protein library, in order to find the optimal expression, solubilization and purification conditions for each protein. With guidance from the obtained screening data, we have also performed successful large‐scale purifications of several of the proteins. The protocol provides a rapid, low cost solution to one of the major bottlenecks in structural biology, making membrane protein structures attainable even for the small laboratory.  相似文献   

6.
Detailed biophysical studies of integral membrane proteins are often hampered by sample preparation difficulties. Membrane proteins are typically difficult to express in sufficient amounts to enable the use of demanding techniques such as nuclear magnetic resonance and X-ray crystallography for structural biology. Here, we show that an inexpensive batch-based cell-free expression system can be a viable alternative for production of a wide range of different membrane proteins, both of prokaryotic and eukaryotic origin. Out of 38 tested protein constructs, 37 express at levels suitable for structural biology, i.e. enough to produce several milligrams of protein routinely and without excessive costs. This success rate was not anticipated and is even more impressive considering that more than half of the expressed proteins where of mammalian origin. A detergent screen identified Brij-58 as the, in general, most successful choice for co-translational solubilization of the expressed proteins.  相似文献   

7.
膜蛋白的拓扑学   总被引:2,自引:0,他引:2  
膜蛋白的拓扑学是研究膜蛋白三维结构的出发点.利用融合蛋白和化学修饰等实验技术已确定了很多膜蛋白的拓扑学.对膜蛋白的转运与插膜的研究确定可能存在两类插膜元件.对已知拓扑学的膜蛋白的统计分析以及蛋白质工程的研究表明存在膜蛋白拓扑学的内正规则.目前已形成预测膜蛋白的拓扑学的比较可靠的策略,这在反向生物学上具有重要意义.但要进行三维结构的预测还有许多路要走.  相似文献   

8.
Membrane proteins represent roughly one-third of the proteins encoded in the genome, yet fewer than 1% of the proteins are of known structure. High-throughput crystallography offers the hope of correcting this imbalance. In order for large-scale membrane protein structural biology to realize its full promise, however, significant technical challenges must be overcome, the two most substantial being facile protein overexpression and reliable methods for crystal growth.  相似文献   

9.
膜蛋白是一类与生物膜相互作用、具有重要功能和独特结构的蛋白质。异源表达纯化一直是了解膜蛋白结构和功能的重要瓶颈。结核分枝杆菌作为典型的胞内致病菌,其膜蛋白的研究具有很好的代表性以及重要意义。目前用于表达膜蛋白的有大肠杆菌、酵母、哺乳动物细胞等表达系统,但结核菌膜蛋白的表达宿主还往往局限于大肠杆菌。异源表达需要综合考虑蛋白的来源、疏水性、跨膜区等特性。低温、加入共表达因子以及改变培养条件有助于结核菌膜蛋白的可溶性表达。另外,包涵体复性也是获得结核菌目的膜蛋白的重要途径。随着新的表达系统,新的促可溶表达策略,新的包涵体复性手段,新的纯化方法的应用,将有更多的膜蛋白异源表达纯化成功,为蛋白质功能研究奠定基础。  相似文献   

10.
Biological membranes are interesting interfaces, at which important biological processes occur. In addition to integral membrane proteins, a number of proteins bind to the membrane surface and associate with it. Posttranslational lipid modification is one important mechanism, by which soluble molecules develop a propensity towards the membrane and reversibly bind to it. Membrane binding by insertion of hydrophobic lipid moieties is relevant for up to 10% of all cellular proteins. A particular interesting lipid-modified protein is the small GTPase Ras, which plays a key role in cellular signal transduction. Until recently, the structural basis for membrane binding of Ras was not well-defined. However, with the advent of new synthesis techniques and the advancement of several biophysical methods, a number of structural and dynamical features about membrane binding of Ras proteins have been revealed. This review will summarize the chemical biology of Ras and discuss in more detail the biophysical and structural features of the membrane bound C-terminus of the protein.  相似文献   

11.
Biological membranes are interesting interfaces, at which important biological processes occur. In addition to integral membrane proteins, a number of proteins bind to the membrane surface and associate with it. Posttranslational lipid modification is one important mechanism, by which soluble molecules develop a propensity towards the membrane and reversibly bind to it. Membrane binding by insertion of hydrophobic lipid moieties is relevant for up to 10% of all cellular proteins. A particular interesting lipid-modified protein is the small GTPase Ras, which plays a key role in cellular signal transduction. Until recently, the structural basis for membrane binding of Ras was not well-defined. However, with the advent of new synthesis techniques and the advancement of several biophysical methods, a number of structural and dynamical features about membrane binding of Ras proteins have been revealed. This review will summarize the chemical biology of Ras and discuss in more detail the biophysical and structural features of the membrane bound C-terminus of the protein.  相似文献   

12.
Lipids and membrane protein structures   总被引:3,自引:3,他引:0  
Membrane proteins do not work alone. The interaction of proteins with membrane lipids can be highly specific and is often important for full functional and structural integrity of the protein. Providing the appropriate lipid environment is of great importance for the purification and crystallisation of membrane proteins. The lipid content can be modulated by adjusting purification protocols or by adding back native or non-native lipids. Lipids can facilitate crystallisation by stabilising the protein and by providing lattice contacts. Of special interest is the crystallisation in lipidic cubic phase and with bicelles, as they appear to provide a membrane-like environment. These strategies have been instrumental for recent successful structure determinations of a human G-protein-coupled receptor, the beta(2)-adrenergic receptor. Lipid supplementation can also help to obtain membrane protein structures in a native conformation, as shown for voltage-gated potassium channels. Membrane protein structures, especially those derived from lipid-enriched preparations, contain bound lipid molecules. Specific protein-lipid interactions not only require careful evaluation and interpretation, but also permit a directed approach to elucidate the structural and/or functional role of these interactions.  相似文献   

13.
Structural biology has advanced our understanding of membrane proteins like no other scientific discipline in the past two decades and the number of high resolution membrane transporter structures solved by X-ray crystallography has increased exponentially over this time period. Currently, single particle cryo-EM is in full swing due to a recent resolution revolution and permits for structural insights of proteins that were refractory to crystallization. It is foreseeable that multiple structures of many human transporters will be solved in the coming five years. Nevertheless, many scientifically important questions remain unanswered despite of available structures, as is illustrated in this article at the example of multidrug efflux pumps and ABC transporters. Structure-function studies likely continue to be a supporting pillar of membrane transporter research. However, there is a trend towards the “integrated structural biologist”, whose research focusses on a biological question and who closely collaborates with other research groups specialized in spectroscopy techniques or molecular dynamics simulation. Future membrane protein research requires joint efforts from specialists of various disciplines to finally work towards a molecular understanding of membrane transport in the context of the living cell. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain  相似文献   

14.
Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.  相似文献   

15.
With the advent of modern detectors and robust structure solution pipeline, cryogenic electron microscopy has recently proved to be game changer in structural biology. Membrane proteins are challenging targets for structural biologists. This minireview focuses a membrane embedded triglyceride synthesizing machine, DGAT1. Decades of research had built the foundational knowledge on this enzyme's activity. However, recently solved cryo-EM structures of this enzyme, in apo and bound form, has provided critical mechanistic insights. The flipping of the catalytic histidine is critical of enzyme catalysis. The structures explain why the enzyme has preference to long fatty acyl chains over the short forms.  相似文献   

16.
膜蛋白结晶方法学研究进展   总被引:1,自引:0,他引:1  
膜蛋白执行着物质运输、能量转换和信号转导等重要生物学功能,其分子的三维结构解析对阐述其功能及开展理性药物设计有着十分重要的意义.目前膜蛋白结构解析以X射线单晶衍射技术为主,该技术需要高质量晶体作为衍射对象.然而由于膜蛋白具有两亲性,难以得到高度有序的三维晶体,进而导致其结构解析十分困难.针对此问题,研究者们发展了一些专门面向膜蛋白的结晶方法,如基于去垢剂的方法,基于脂类的方法等.本文回顾了这些方法,并对未来膜蛋白的结晶研究进行了展望.  相似文献   

17.
Rotational Alignment (RA) solid-state NMR provides the basis for a general method for determining the structures of membrane proteins in phospholipid bilayers under physiological conditions. Membrane proteins are high priority targets for structure determination, and are challenging for existing experimental methods. Because membrane proteins reside in liquid crystalline phospholipid bilayer membranes it is important to study them in this type of environment. The RA solid-state NMR approach we have developed can be summarized in five steps, and incorporates methods of molecular biology, biochemistry, sample preparation, the implementation of NMR experiments, and structure calculations. It relies on solid-state NMR spectroscopy to obtain high-resolution spectra and residue-specific structural restraints for membrane proteins that undergo rotational diffusion around the membrane normal, but whose mobility is otherwise restricted by interactions with the membrane phospholipids. High resolution spectra of membrane proteins alone and in complex with other proteins and ligands set the stage for structure determination and functional studies of these proteins in their native, functional environment.  相似文献   

18.
Dong H  Sharma M  Zhou HX  Cross TA 《Biochemistry》2012,51(24):4779-4789
Among the growing number of membrane protein structures in the Protein Data Bank, there are many transmembrane domains that appear to be native-like; at the same time, there are others that appear to have less than complete native-like character. Hence, there is an increasing need for validation tools that distinguish native-like from non-native-like structures. Membrane mimetics used in protein structural characterizations differ in numerous physicochemical properties from native membranes and provide many opportunities for introducing non-native-like features into membrane protein structures. One possible approach for validating membrane protein structures is based on the use of glycine residues in transmembrane domains. Here, we have reviewed the membrane protein structure database and identified a set of benchmark proteins that appear to be native-like. In these structures, conserved glycine residues rarely face the lipid interstices, and many of them participate in close helix-helix packing. Glycine-based validation allowed the identification of non-native-like features in several membrane proteins and also shows the potential for verifying the native-like character for numerous other membrane protein structures.  相似文献   

19.
Membrane proteins are challenging to study and restraints for structure determination are typically sparse or of low resolution because the membrane environment that surrounds them leads to a variety of experimental challenges. When membrane protein structures are determined by different techniques in different environments, a natural question is “which structure is most biologically relevant?” Towards answering this question, we compiled a dataset of membrane proteins with known structures determined by both solution NMR and X‐ray crystallography. By investigating differences between the structures, we found that RMSDs between crystal and NMR structures are below 5 Å in the membrane region, NMR ensembles have a higher convergence in the membrane region, crystal structures typically have a straighter transmembrane region, have higher stereo‐chemical correctness, and are more tightly packed. After quantifying these differences, we used high‐resolution refinement of the NMR structures to mitigate them, which paves the way for identifying and improving the structural quality of membrane proteins.  相似文献   

20.
Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号