首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xue Y  Shao W 《Biotechnology letters》2004,26(19):1511-1515
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

2.
Laccase from Myceliophthora thermophila was immobilized by encapsulation in a sol-gel matrix based on methyltrimethoxysilane and tetramethoxysilane. The amount of laccase used for the preparation of the hydrogel was in the range 2.2-22 mg of protein/mL sol and the corresponding enzymatic activities were in the range 5.5-17.0 U/g biocatalyst. The kinetic parameters of the encapsulated laccase showed that the immobilized enzyme presented lower affinity for the substrate 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). However, the stability of laccase was significantly enhanced after immobilization; thus, both pH and thermal stability improved about 10-30% and tolerance to different inactivating agents (NaN(3) , ZnCl(2) , CoCl(2) , CaCl(2) , methanol, and acetone) was 20-40% higher. The reusability of the immobilized laccase was demonstrated in the oxidation of ABTS for several consecutive cycles, preserving 80% of the initial laccase activity after 10 cycles. The feasibility of the immobilized biocatalyst was tested for the continuous elimination of Acid Green 27 dye as a model compound in a packed-bed reactor (PBR). Removals of 70, 58, 57, and 55% were achieved after four consecutive cycles with limited adsorption on the support: only 10-15%. Finally, both batch stirred tank reactor (BSTR) operated in several cycles and PBR, containing the solid biocatalyst were applied for the treatment of a solution containing the endocrine disrupting chemicals (EDCs): estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2). Eliminations of EDCs in the BSTR were higher than 85% and the reusability of the biocatalyst for the degradation of those estrogens was demonstrated. In the continuous operation of the PBR, E1 was degraded by 55% and E2 and EE2 were removed up to 75 and 60%, at steady-state conditions. In addition, a 63% decrease in estrogenic activity was detected.  相似文献   

3.
Escherichia coli B 10, which has high activity of tryptophan synthetase, was grown in a 50-L batch culture in order to determine in which growth phase the cells have the highest specific tryptophan productivity. Accordingly, whole cells of the stationary phase were used for immobilization in polyacrylamide beads. After immobilization, these immobilized cells had 56% activity of tryptophan synthetase compared with that of free cells. First, the properties of immobilized cells were investigated. Next, discontinuous productions of L-tryptophan were carried out by using immobilized cells. In discontinuous production of L-tryptophan by the batch, the activity remaining of immobilized cells was 76-79% after 30 times batchwise use. In continuous production of L-tryptophan with a continuous stirred tank reactor (CSTR), the activity remaining of the immobilized cells was 80% after continuous use for 50 days. The maximum productivity of L-tryptophan in this CSTR system was 0.12 g tryptophan L(-1) h(-1).  相似文献   

4.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

5.
Summary The repeated batch and continuous operations for transphosphatidylation reaction were carried out for phosphatidylglycerol (PG) synthesis from phosphatidylcholine (PC) with the help of immobilized cabbage phospholipase D (PLD) in the presence of glycerol. The biphasic reaction system was used which included the aqueous phase containing immobilized PLD along with high concentrations of glycerol (30%–50%) and buffer, whereas the main part of substrate (PC) and products (mainly PG) formed were in the organic phase (diethyl ether).Octyl-Sepharose CL-4B having a hydrophobic octyl group was chosen for the PLD immobilization. Both immobilization yield and activity yield of immobilized enzyme were 100%. The effects of solvents, temperature and glycerol concentrations on the immobilized PLD were examined. Repeated batch conversion of PC (15 g/l) to PG was examined with the immobilized PLD in 30% glycerol. In all five batch cycles examined, 100% selectivity was obtained and there was no significant decrease in the fractional conversion of PC to PG (98%–99%) in the first three batch cycles. In the cases of a packed-bed reactor (PBR) and a continuous stirred-tank reactor (CSTR) used for continuous synthesis of PG with the immobilized PLD, the operational stabilities of the immobilized enzyme were almost the same (half life=14 h at 30°C) when purified PC was used, while in the case of partially purified PC in CSTR the half life increased more than five times.Abbreviations used PC phosphatidylcholine - PG phosphatidylglycerol - PA phosphatidic acid - PLD phospholipase D - PBR packed bed reactor - CSTR continuous stirred tank reactor Studies on enzymatic conversion of phospholipids (III)  相似文献   

6.
The growth of Trichoderma reesei QM9414 in shake flasks at 28 degrees C on hemicellulose substrates and bagasse resulted in rather low yields of hemicellulolytic enzymes (1.0-1.5 units/mL xylanase and 0.05-0.08 units/mL beta-xylosidase). The influence of pH on the synthesis of beta-xylosidase was greater than on the synthesis of xylanase. Both xylanase and beta-xylosidase showed optimal activity at pH 4-5 and 55-60 degrees C. Xylanase was stable at pH 2-10 but was heat labile and totally inactivated after 1 h at 65 degrees C. Enzyme stability towards heat could be increased in the presence of bovine serum albumin. The beta-xylosidase was more tolerant to heat, but stable over a pH range 2.5-6.0. The D-xylose inhibited both enzymes in a competitive manner. Hemicellulose (heteroxylan) was degraded to the extent of 30-40%within 24 h. The degree of hydrolysis decreased as the substrate concentration increased and increased with increased amounts of enzyme. Multiple enzyme doses resulted in increased saccharification in reduced times. The degree of hydrolysis was influenced by the amount of beta-xylosidase present in the hemicellulolytic enzyme preparation. The -;xylosidase was demonstrated to play an important role in the overall conversion of heteroxylan into xylose that is analogous to the role of beta-glucosidase in the saccharification of cellulose by cellulases.  相似文献   

7.
AIMS: It is evaluated the effectiveness of the combined action of two highly thermostable enzymes for the hydrolysis of xylans at high temperature in order to produce D-xylose. METHODS AND RESULTS: Xylans from different sources were hydrolyzed at high degree at 70 degrees C by co-action of a xylanase from the thermophilic bacterium Anoxybacillus flavithermus BC and the novel beta-xylosidase/alpha-arabinosidase from the hyperthermophilic crenarchaeon Sulfolobus solfataricus Oalpha. Beechwood xylan was the best substrate among the xylans tested giving, by incubation only with xylanase, 32.8 % hydrolysis after 4 h. The addition of the beta-xylosidase/alpha-arabinosidase significantly improved the rate of hydrolysis, yielding 63.6% conversion after 4 h incubation, and the main sugar identified was xylose. CONCLUSIONS: This study demonstrates that a significant degree of xylan degradation was reached at high temperature by co-action of the two enzymes. Xylose was obtained as a final product in considerable yield. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the xylan represents the second most abundant polysaccharide in nature, it still doesn't have significant utilization for the difficulties encountered in its hydrolysis. Its successful hydrolysis to xylose in only one stage process could make of it a cheap sugar source and could have an enormous economic potential for the conversion of plant biomass into fuels and chemicals.  相似文献   

8.
Enzymatic lipase transesterification of palm oil to biodiesel in a packed‐bed reactor (PBR) using a novel strain of the fungus Aspergillus niger, immobilized within polyurethane biomass support particles (BSPs), was investigated. A three‐step addition of methanol was used to reduce lipase inhibition by immiscible methanol. The influence of water content and PBR flow rate was investigated. FAME yield was enhanced with an increase of PBR flow rate in the range of 0.15–30 L h?1, where inefficient mixing of the reaction mixture at lower flow rates resulted in low conversion rates i.e. 69% after 72‐h reaction. Adding the third mole equivalent of methanol resulted in lipase inhibition due to methanol migration into the accumulated glycerol layer. Glutaraldehyde (GA) solution (0.5 vol.%) was used to stabilize lipase activity, which led to a high FAME yield (>90%) in the PBR after 72‐h of reaction time at a flow rate of 15 L h?1, and a water content of 15%. Moreover, a high conversion rate (>85%) was maintained after four palm oil batch conversion cycles in the PBR. In contrast, lipase activity of non‐GA‐treated cells decreased with each PBR batch cycle, where only 70% FAME was produced after the forth PBR cycle. Transesterification of palm oil in a PBR system using BSPs‐immobilized A. niger as a whole‐cell biocatalyst is a viable process for enzymatic biodiesel production.  相似文献   

9.
Summary Aspergillus terreus NRRC 1960 spores were entrapped in calcium alginate gel beads or alternotely the fungal mycelium was immobilized either on Celite R-626 or in agar gel cubes, and the biocatalyst was employed both in repeated batch and in continuous column reactors to produce itaconic acid from D-xylose or D-glucose. The highest itaconic acid yield obtained in a submerged culture batch fermentation was 54.5% based on total initial glucose (55 g/l) with a volumetric productivity of 0.32 g/l h, and 44.8% from xylose (67 g/l) with a productivity of 0.20 g/l h. In a repeated batch fermentation mycelium immobilized in agar gel had a productivity of 0.112 g/l h, and mycelium grown from spores immobilized in calcium alginate gel 0.06 g/l h, both from xylose (60 g/l). With the best immobilized biocatalyst system used employing Celite R-626 as a carrier, volumetric productivities of 1.2 g/l h from glucose and 0.56 g/l h from xylose (both at 60 g/l) were obtained in continuous column operation for more than 2 weeks.  相似文献   

10.
About 270 yeast isolates were screened for xylitol production using xylose as the sole carbon source. The best isolate, Debaryomyces hansenii UFV-170, released 5.84 g L(-1) xylitol from 10 g L(-1) xylose after 24 h, corresponding to a yield of xylitol on consumed substrate (Y(P/S)) of 0.54 g g(-1). This strain was cultivated batch-wise at variable starting concentrations of xylose (S(o)) and biomass (X(o)) and agitation intensity, in order to improve xylitol production and to evaluate, through simple carbon balances, the influence of these conditions on xylose metabolism. Under the best microaerobic conditions (S(o) = 53 g L(-1), X(o) = 1.4 g L(-1), 200 rpm), xylitol production reached 37.0 g L(-1), corresponding to xylitol volumetric productivity of 1.0 g L(-1)h(-1), specific productivity of 0.22 g g(-1)h(-1) and Y(P/S) = 0.76 g g(-1). Almost 83% of xylose was consumed for xylitol production, the rest being consumed for growth, while respiration was negligible. The new isolate appeared to be a promising alternative for industrial xylitol bioproduction.  相似文献   

11.
Fermentation of xylose from hydrolysate of acid-treated corn cob by Pichia stipitis is inhibited by acetic acid and lignin derivatives. In the present study, we have designed and implemented an immobilized cell culture for xylose to ethanol conversion from acid-treated corn cob hydrolysate without the removal of fermentation inhibitors. In this study, cultivations of suspended and immobilized Pichia were compared in terms of ethanol yield and productivity to investigate whether the cell immobilization could improve resistance to inhibitors. Cell immobilization clearly favored the fermentative metabolism in nondetoxified corn cob hydrolysate leading to an improvement of twofold ethanol productivity as compared to that achieved with suspension culture. Calcium alginate as an immobilization matrix was selected to immobilize Pichia cells. Concentrations of sodium alginate, calcium chloride, and fermentor agitation speed were optimized for ethanol production using statistical method. Statistical analysis showed that agitation speed had maximum influence on ethanol production by immobilized Pichia cells. In comparison to suspension culture, immobilization had a positive impact on the fermentative metabolism of Pichia, improving the ethanol yield from 0.40 to 0.43?g/g and productivity from 0.31 to 0.51?g/L/h for acid-treated corn cob hydrolysate.  相似文献   

12.
Frog epidermis tyrosinase has been immobilized on Enzacryl-AA (a polyacrylamide-based support) and CPG(zirclad)-Arylamine (a controlled pore glass support) in order to stabilize the tyrosine hydroxylase activity of the enzyme; in this way, the immobilized enzyme could be used to synthesize L-dopa from L-tyrosine. The activity immobilization yield Y(IME) (act) (higher than 86%), coupling efficiency (up to 90%), storage stability (no loss in 120 days), and reaction stability (t(1/2) was higher than 20 h in column reactors) were measured for tyrosinase after its immobilization. The results showed a noticeable improvement (in immobilization yield, coupling efficiency, and storage and operational stabilities) over previous reports in which tyrosinase was immobilized for L-dopa production. The activity and stability of immobilized enzyme preparations working in three different reactor types have been compared when used in equivalent conditions with respect to a new proposed parameter of the reactor (R(p)), which allows different reactor configurations to be related to the productivity of the reactor during its useful life time. The characteristic reaction inactivation which soluble tyrosinase shows after a short reaction time has been avoided by immobilization, and the stabilization was enhanced by the presence of ascorbate. However, another inactivation process appeared after a prolonged use of the immobilized enzyme. The effects of reactor type and operating conditions on immobilized enzyme activity and stability are discussed.  相似文献   

13.
Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The chromosomal DNA fragments of Bacillus pumilus IPO, a potent xylan-hydrolyzing bacterium, were ligated to a vector plasmid, pBR322, and used to transform Escherichia coli C600 cells. Two hybrid plasmids, pOXD28 and pOXN29, were found to enable the transformants to produce beta-xylosidase. The former was found to contain a 2.6-MDa Bg/II fragment and the latter, a 7.7-MDa PstI fragment, both coding beta-xylosidase, but xylanase is coded only on the latter hybrid plasmid. The DNAs inserted in both plasmids originated from the B. pumilus chromosome, but from different regions, as shown by Southern hybridization and the analysis of restriction fragments. beta-Xylosidases I and II, coded on pOXN29 and pOXD28 respectively, were purified to homogeneous preparations and compared. Both were dimer enzymes consisting of 65000-70000-Da subunits. Specific activity and the Km value of beta-xylosidase I to p-nitrophenyl beta-D-xyloside as substrate were respectively 100 and 1/40 times those of beta-xylosidase II. The mobilities of beta-xylosidases I and II on polyacrylamide gel electrophoresis were also different. beta-Xylosidase I, the gene of which is located near the xylanase gene on pOXN29, can convert xylooligosaccharides to xylose, but beta-xylosidase II had little activity on xylobiose. These results suggest that beta-xylosidase I is the main enzyme for xylan hydrolysis in B. pumilus.  相似文献   

15.
以琼脂粉为基质制备金属螯合载体,并用于固定重组腈水解酶。研究发现:制备金属螯合载体最合适的金属离子为Zn2+。当Zn2+离子浓度0.3 mol/L、给酶量15.6 mg/g、固定化pH 8.0、固定化温度40℃时,制得的固定化酶活性最高。固定化酶最适反应温度为50℃、最适反应pH为7.0。当扁桃腈浓度为10 mmol/L、反应1 h时,固定化酶最大产率为0.041 mmol/(g·h);在反应12 h时,产物e.e.值可达到99%以上。固定化酶重复使用8次以后,酶活力仍保持在45%。  相似文献   

16.
Both beta-xylanase and beta-xylosidase were purified to homogeneity from a xylose-grown culture of Aureobasidium pullulans. Cellular distribution studies of enzyme activities revealed that beta-xylanase was an extracellular enzyme, during both the exponential and stationary phases, whereas beta-xylosidase was mostly periplasmic associated. The beta-xylanase exhibited very high specificity for xylan extracted from Eucalyptus grandis dissolving pulp, whereas the beta-xylosidase was only active on p-nitrophenyl xyloside and xylobiose. Comparison of kcat/Km ratios showed that the beta-xylanase hydrolyzed xylan from dissolving pulp 1.3, 2.1, and 2. 3 times more efficiently than Eucalyptus hemicellulose B, Eucalyptus hemicellulose A, and larchwood xylan, respectively. The beta-xylosidase exhibited a transxylosylation reaction during the hydrolysis of xylobiose. When applied on acid sulfite pulp, both enzymes released xylose and hydrolyzed xylan to a different extent. Although beta-xylosidase (0.4 U/g pulp) liberated more xylose from pulp than beta-xylanase (4.7 U/g pulp), it was responsible for only 3% of xylan solubilization. Treatment of pulp with beta-xylanase liberated 51.7 microgram of xylose/g and hydrolyzed 10% of xylan. The two enzymes acted additively on pulp and removed 12% of pulp xylan. A synergistic effect in terms of release of xylose from pulp was observed when the enzyme mixture of beta-xylanase and beta-xylosidase was supplemented with beta-mannanase. However, this did not result in further enzymatic degradation of pulp xylan. Both beta-xylanase and beta-xylosidase altered the carbohydrate composition of sulfite pulp by increasing the relative cellulose content at the expense of reduced hemicellulose content of pulp.  相似文献   

17.
AIMS: To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. METHODS AND RESULTS: The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. CONCLUSIONS: The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.  相似文献   

18.
The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.  相似文献   

19.
In this work, lipase produced from an isolated strain Burkholderia sp. C20 was immobilized on magnetic nanoparticles to catalyze biodiesel synthesis. Core-shell nanoparticles were synthesized by coating Fe(3)O(4) core with silica shell. The nanoparticles treated with dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride were used as immobilization supporters. The Burkholderia lipase was then bound to the synthesized nanoparticles for immobilization. The protein binding efficiency on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 97%, while the efficiency was only 76% on non-modified Fe(3)O(4)-SiO(2). Maximum adsorption capacity of lipase on alkyl-functionalized Fe(3)O(4)-SiO(2) was estimated as 29.45 mg g(-1) based on Langmuir isotherm. The hydrolytic kinetics (using olive oil as substrate) of the lipase immobilized on alkyl-grafted Fe(3)O(4)-SiO(2) followed Michaelis-Menten model with a maximum reaction rate and a Michaelis constant of 6251 Ug(-1) and 3.65 mM, respectively. Physical and chemical properties of the nanoparticles and the immobilized lipase were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Moreover, the immobilized lipase was used to catalyze the transesterification of olive oil with methanol to produce fatty acid methyl esters (FAMEs), attaining a FAMEs conversion of over 90% within 30 h in batch operation when 11 wt% immobilized lipase was employed. The immobilized lipase could be used for ten cycles without significant loss in its transesterification activity.  相似文献   

20.
The immobilization of dextransucrase in Ca-alginate beads relies on the close association between dextran polymer and dextransucrase. However, high amounts of dextran in the enzyme preparation drastically limit the specific activity of the immobilized enzyme (4 U/mL of alginate beads). Moreover, even in the absence of diffusion limitation at the batch conditions used, the enzyme behavior is modified by entrapment so that the dextran yield increases and the alpha-1,2 glucooligosaccharides (GOS) are produced with a lower yield (46.6% instead of 56.7%) and have a lower mean degree of polymerization than with the free dextransucrase. When the immobilized catalyst is used in a continuous reaction, the reactor flow rate necessary to obtain high conversion of the substrates is very low, leading to external diffusion resistance. As a result, dextran synthesis is even higher than in the batch reaction, and its accumulation within the alginate beads limits the operational stability of the catalyst and decreases glucooligosaccharide yield and productivity. This effect can be limited by using reactor columns with length to diameter ratio > or =20, and by optimizing the substrate concentrations in the feed solution: the best productivity obtained was 3.74 g. U(-1). h(-1), with an alpha-1,2 GOS yield of 36%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号