首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organosulfur compounds (OSCs), present in garlic, are studied for their protective effect against human cancers. P-glycoprotein (P-gp) and multidrug resistance protein 2 (Mrp2) are two transporters involved in the defense of cells and in the development of multidrug resistance. Whereas OSCs increase glutathione S-transferase activity (GST), Mrp2 plays a role in the transport of glutathione (GSH)-conjugates. In this study, we have investigated the effect of two OSCs, diallyl disulfide (DADS) and S-allyl cysteine (SAC), on P-gp and Mrp2 expression in renal brush-border membranes. By Western blot analysis, our results show that DADS induces Mrp2 expression (by 7-fold), which correlates with the rise of GST activity and GSH levels. Surprisingly, a co-administration of OSC with cisplatin, an anticancer drug, significantly increased Mrp2 gene and protein expression (by 30-fold), suggesting that DADS could potentiate the effects of cisplatin. Interestingly, SAC and cisplatin in co-treatment decreased P-gp protein expression and mdr1b isoform mRNA levels. In addition, modulation of the mdr1b isoform and Mrp2 by cisplatin was completely abolished by a glutathione precursor, N-acetyl cysteine. These results indicate that OSCs present in a garlic-rich diet might alter chemotherapeutic treatments using P-gp or Mrp2 substrates.  相似文献   

2.
3.
Abstract: Two membrane glycoproteins acting as energy-dependent efflux pumps, mdr -encoded P-glycoprotein (P-gp) and the more recently described multidrug resistance-associated protein (MRP), are known to confer cellular resistance to many cytotoxic hydrophobic drugs. In the brain, P-gp has been shown to be expressed specifically in the capillary endothelial cells forming the blood-brain barrier, but localization of MRP has not been well characterized yet. Using RT-PCR and immunoblot analysis, we have compared the expression of P-gp and Mrp1 in homogenates, isolated capillaries, primary cultured endothelial cells, and RBE4 immortalized endothelial cells from rat brain. Whereas the mdr1a P-gp-encoding mRNA was specifically detected in brain microvessels and mdr1b mRNA in brain parenchyma, mrp1 mRNA was present both in microvessels and in parenchyma. However, Mrp1 was weakly expressed in microvessels. Mrp1 expression was higher in brain parenchyma, as well as in primary cultured brain endothelial cells and in immortalized RBE4 cells. This Mrp1 overexpression in cultured brain endothelial cells was less pronounced when the cells were cocultured with astrocytes. A low Mrp activity could be demonstrated in the endothelial cell primary monocultures, because the intracellular [3H]vincristine accumulation was increased by several MRP modulators. No Mrp activity was found in the cocultures or in the RBE4 cells. We suggest that in rat brain, Mrp1, unlike P-gp, is not predominantly expressed in the blood-brain barrier endothelial cells and that Mrp1 and the mdr1b P-gp isoform may be present in other cerebral cells.  相似文献   

4.
P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.  相似文献   

5.
P-glycoprotein (P-gp) mediates efflux of xenobiotics and bacterial toxins from the intestinal mucosa into the lumen. Dysregulation of P-gp has been implicated in inflammatory bowel disease. Certain probiotics have been shown to be effective in treating inflammatory bowel disease. However, direct effects of probiotics on P-gp are not known. Current studies examined the effects of Lactobacilli on P-gp function and expression in intestinal epithelial cells. Caco-2 monolayers and a mouse model of dextran sulfate sodium-induced colitis were utilized. P-gp activity was measured as verapamil-sensitive [(3)H]digoxin transepithelial flux. Multidrug resistant 1 (MDR1)/P-gp expression was measured by real-time quantitative PCR and immunoblotting. Culture supernatant (CS; 1:10 or 1:50, 24 h) of Lactobacillus acidophilus or Lactobacillus rhamnosus treatment of differentiated Caco-2 monolayers (21 days postplating) increased (~3-fold) MDR1/P-gp mRNA and protein levels. L. acidophilus or L. rhamnosus CS stimulated P-gp activity (~2-fold, P < 0.05) via phosphoinositide 3-kinase and ERK1/2 MAPK pathways. In mice, L. acidophilus or L. rhamnosus treatment (3 × 10(9) colony-forming units) increased mdr1a/P-gp mRNA and protein expression in the ileum and colon (2- to 3-fold). In the dextran sulfate sodium (DSS)-induced colitis model (3% DSS in drinking water for 7 days), the degree of colitis as judged by histological damage and myeloperoxidase activity was reduced by L. acidophilus. L. acidophilus treatment to DSS-treated mice blocked the reduced expression of mdr1a/P-gp mRNA and protein in the distal colon. These findings suggest that Lactobacilli or their soluble factors stimulate P-gp expression and function under normal and inflammatory conditions. These data provide insights into a novel mechanism involving P-gp upregulation in beneficial effects of probiotics in intestinal inflammatory disorders.  相似文献   

6.
7.
8.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 mumol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

9.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

10.
11.
Tan‐67 is a selective non‐peptidic δ‐opioid receptor (DOR ) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)‐caused neuronal injury in pre‐treated animals. In this study, we examined whether post‐ischemic administration of Tan‐67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP ). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan‐67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan‐67 treatment. Our results showed that post‐ischemic administration of Tan‐67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan‐67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan‐67 neuroprotection in infarct volume. Tan‐67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan‐67‐induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan‐67 attenuated BACE ‐1 expression, β‐secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan‐67 is a promising DOR ‐dependent therapeutic agent for treating I/R‐caused disorder and that Tan‐67‐mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.

  相似文献   

12.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from blood to brain extracellular fluid. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain endothelium and contributes to the formation of a functional barrier to lipid-soluble drugs such as anticancer agents. The mdr1a P-gp-encoding gene is exclusively expressed in the rodent BBB. Primary cultures of rat brain endothelial cells and GP8.3 cells showed a dramatic decrease in mdr1a mRNA level and some expression of mdr1b mRNA. GPNT cells, derived from GP8.3 cells after transfection with a puromycin resistance gene, were chronically treated with 5 microg/mL puromycin, a P-gp substrate. Compared with rat brain endothelial cells and GP8.3 cells, GPNT cells exhibited a very high level of expression of mdr1a mRNA together with a moderate level of mdr1b mRNA expression. Accordingly, P-gp expression and activity were strongly increased. When GP8.3 and puromycin-starved GPNT cells were treated with puromycin, mdr1a expression was selectively increased. High expression of mdr1a mRNA in GPNT cells may thus be related to the chronic treatment with puromycin. We conclude that GPNT cells may be used as a valuable rat in vitro model for studying the regulation of mdr1a expression at the BBB level.  相似文献   

13.
The plasma membrane transport protein P-glycoprotein (P-gp) is expressed by subsets of both CD4+ and CD8+ T cells in mice. The proportion of T cells that express P-gp goes up with age, and the P-gp-expressing subset of the CD4 memory population is hyporesponsive in many in vitro assays. The significance of P-gp expression for T cell function has not been well established, although several reports have suggested that it may promote cytokine export and/or cytotoxic T cell function. To elucidate which T cell functions may require P-gp, we have compared a variety of responses using T cells from wt and P-gp knockout mice. Protein expression and rhodamine-123 efflux studies revealed that peripheral T cells exclusively utilize the mdr1a-encoded isoform rather than the homologous mdr1b or mdr2 isoforms. Comparisons of T cells from mdr1a+/+ and mdr1a-/- mice showed no differences in proliferation or in secretion of IL-2, IL-4, IL-5, IL-10, or IFN-gamma in response to polyclonal stimulation. Moreover, mdr1a-/- T cells produced strong allospecific cytotoxic responses comparable to those of wt T cells. Our results show that P-gp is not a necessary component of peripheral T cell functional responses. Further investigation will be needed to determine the significance of P-gp expression in T lymphocytes.  相似文献   

14.

Background

Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury.

Methods

Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.

Results

I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.

Conclusion

The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.  相似文献   

15.
In the present study MRP2/ABCC2 and BSEP/ABCB11 expression were investigated in sandwich cultured (SC) human and rat hepatocytes exposed to the proinflammatory cytokines. The investigation was also done in lipopolysaccharide (LPS)-treated rats. In SC human hepatocytes, both absolute protein and mRNA levels of MRP2/ABCC2 were significantly down-regulated by TNF-α, IL-6, or IL-1β. In contrast to mRNA decrease, which was observed for BSEP/ABCB11, the protein amount was significantly increased by IL-6 or IL-1β. A discrepancy between the change in BSEP/ABCB11 mRNA and protein levels was encountered in SC human hepatocytes treated with proinflammatory cytokines. In SC rat hepatocytes, Mrp2/Abcc2 mRNA was down-regulated by TNF-α and IL-6, whereas the protein level was decreased by all three cytokines. Down-regulations of both Bsep/Abcb11 mRNA and protein levels were found in SC rat hepatocytes exposed to TNF-α or IL-1β. Administration of LPS triggered the release of the proinflammatory cytokines and caused the decrease of Mrp2/Abcc2 and Bsep/Abcb11 protein in liver at 24 h post-treatment; however, the Mrp2 and Bsep protein levels rebounded at 48 h post-LPS treatment. In total, our results indicate that proinflammatory cytokines regulate the expression of MRP2/Mrp2 and BSEP/Bsep and for the first time demonstrate the differential effects on BSEP/Bsep expression between SC human and rat hepatocytes. Furthermore, the agreement between transporter regulation in vitro in SC rat hepatocytes and in vivo in LPS-treated rats during the acute response phase demonstrates the utility of in vitro SC hepatocyte models for predicting in vivo effects.  相似文献   

16.
Earlier studies suggest that Mrp1 may mediate ATP-dependent cellular extrusion of unconjugated bilirubin (UCB). We studied the serial responses of expression of Mrp1 mRNA and protein in rats with increased bilirubin production due to hemolysis induced by phenylhydrazine (PHZ) treatment. Mrp1 mRNA was analyzed by quantitative PCR and protein by Western blot. Hepatic expression of Mrp1 mRNA and protein peaked at day 3 of PHZ treatment. Splenic expression of Mrp1 mRNA peaked within 24h and returned to baseline at day 5 whereas Mrp1 protein expression peaked at day 3. Pretreatment with heme-oxygenase inhibitor, tin mesoporphyrin, blunted the increase in serum UCB and erased the overexpression of Mrp1 both in liver and spleen. Thus, the upregulation of Mrp1 in hemolysis is mediated by UCB and/or other products of heme oxygenase, further supporting a role of Mrp1 in UCB transport and protection from its cellular toxicity.  相似文献   

17.
Zhu HJ  Liu GQ 《Life sciences》2004,75(11):1313-1322
The accumulation of glutamate in the extracellular space in the central nervous system (CNS) plays a major part in ischemic and anoxic damage. In this study, we examined the effect of glutamate on the expression and activity of P-glycoprotein (P-gp) in rat brain microvessel endothelial cells (RBMECs) making up the blood-brain barrier (BBB). The level of P-gp expression significantly increased in RBMECs after the treatment of 100 microM glutamate. At this concentration, glutamate also enhanced rat mdr1a and mdr1b mRNA levels determined by RT-PCR analysis. Flow cytometry was used to study P-gp activity by analysis of intracellular rhodamine123 (Rh123) accumulation. Overexpression of P-gp resulted in a decreased intracellular accumulation of Rh123 in RBMECs. Glutamate-induced increase of intracellular reactive oxygen species (ROS) was observed by using the 2',7'-dichlorofluorescein (2',7'-DCF) assay. MK-801, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and ROS scavenger N-acetylcysteine obviously blocked ROS generation and attenuated the changes of both expression and activity of P-gp induced by glutamate in RBMECs. These data suggested that glutamate up-regulated P-gp expression in RBMECs by an NMDA receptor-mediated mechanism and that glutamate-induced generation of ROS was linked to the regulation of P-gp expression. Therefore, transport of P-gp substrates in BBB appears to be affected during ischemic and anoxic injury.  相似文献   

18.
19.
The aim of this study was to assess cyclooxygenase (COX)-1 and COX-2 expression in skeletal muscle after an ischemia-reperfusion (I/R). Male Sprague-Dawley rats were subjected to unilateral hindlimb ischemia for 2 h and then euthanized after 0, 1, 2, 4, 6, 10, 24, and 72 h of reperfusion. The COX protein and mRNA were assessed in control and injured gastrocnemius muscle. Muscle damage was indirectly determined by plasma creatine kinase activity and edema by weighing wet muscle. Creatine kinase activity in plasma increased as early as 1 h after reperfusion and returned to control levels by 72 h of reperfusion. Edema was observed at 6 and 10 h of reperfusion, but histological investigations showed an absence of tissular inflammatory cell infiltration. COX-1 mRNA was expressed in control muscle and was increased at 72 h of reperfusion, but the levels of associated COX-1 protein detected in control and injured gastrocnemius muscle were similar. COX-2 mRNA was not, or only slightly, detectable in control muscle and after I/R. In contrast, I/R induced major overexpression of COX-2 immunoreactivity at 6 and 10 h of reperfusion with a maximum at 10 h, whereas COX-2 protein was undetectable in control muscle. In conclusion, hindlimb I/R induced a large overexpression of COX-2 but not COX-1 protein between 6 and 10 h after injury. These results suggest a role for COX-2 enzyme in such pathophysiological conditions of the skeletal muscle.  相似文献   

20.
The expression of hepatic multidrug resistance-associated protein (Mrp)1, 2, 3, and 6 and organic anion transporting polypeptides (Oatp)1 and 2 were examined in control and 20- to 21-day pregnant rats. Western analysis showed that expression of Oatp2 was decreased 50% in pregnancy, whereas expression of Oatp1 did not change. Expression of Mrp2 protein determined by Western analysis of total liver homogenate decreased to 50% of control levels in pregnant rats, consistent with studies using plasma membranes. Confocal immunohistochemistry showed that Mrp2 expression was confined to the canalicular membrane in both control and pregnant rats and was not detectable in intracellular compartments. In isolated perfused liver, the biliary excretion of 2,4-dintrophenyl-glutathione was significantly decreased in pregnancy, consistent with decreased expression of Mrp2. The expression of the basolateral transporter Mrp1 was not altered in pregnancy, whereas expression of Mrp6 mRNA was decreased by 60%. Expression of Mrp3 was also decreased by 50% in pregnant rat liver, indicating differential regulation of Mrp isoforms in pregnancy. These data also demonstrate that decreased Mrp2 expression is not necessarily accompanied by increased Mrp3 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号