首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.  相似文献   

2.
Rao M 《Developmental biology》2004,275(2):269-286
The past few years have seen remarkable progress in our understanding of embryonic stem cell (ES cell) biology. The necessity of examining human ES cells in culture, coupled with the wealth of genomic data and the multiplicity of cell lines available, has enabled researchers to identify critical conserved pathways regulating self-renewal and identify markers that tightly correlate with the ES cell state. Comparison across species has suggested additional pathways likely to be important in long-term self-renewal of ES cells including heterochronic genes, microRNAs, genes involved in telomeric regulation, and polycomb repressors. In this review, we have discussed information on molecules known to be important in ES cell self-renewal or blastocyst development and highlighted known differences between mouse and human ES cells. We suggest that several additional pathways required for self-renewal remain to be discovered and these likely include genes involved in antisense regulation, microRNAs, as well as additional global repressive pathways and novel genes. We suggest that cross species comparisons using large-scale genomic analysis tools are likely to reveal conserved and divergent paths required for ES cell self-renewal and will allow us to derive ES lines from species and strains where this has been difficult.  相似文献   

3.
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.  相似文献   

4.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

5.
Leukaemia inhibitory factor (LIF) was the first soluble factor identified as having potential to maintain the pluripotency of mouse embryonic stem (ES) cells. Recently, a second factor, Wnt, with similar activity was found. However, the relationship between these completely different signals mediating the overlapping functions is still unclear. Here, we report that the conditioned medium of L cells expressing Wnt3a maintains ES cells in the undifferentiated state in feeder-free culture, followed by expression of stem cell markers and their ability to generate germline chimaeras. However, although the activity of this conditioned medium is dependent on Wnt3a, recombinant Wnt3a protein cannot maintain ES cells in the undifferentiated state. As supplementation with Wnt3a to the sub-threshold level of LIF alone was not sufficient to maintain ES self-renewal, the results of maintenance of the undifferentiated state indicated the synergistic action of Wnt and LIF. Induction of constitutively activated beta-catenin alone is unable to maintain ES self-renewal but shows a synergistic effect with LIF. These observations indicate that the Wnt signal mediated by the canonical pathway is not sufficient but enhances the effect of LIF to maintain self-renewal of mouse ES cells.  相似文献   

6.
BackgroundCell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells.MethodsFused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells.ResultsColonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells.ConclusionsOur results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.  相似文献   

7.
8.
9.
wnt3a but not wnt11 supports self-renewal of embryonic stem cells   总被引:5,自引:0,他引:5  
wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.  相似文献   

10.
11.
Differences between human and mouse embryonic stem cells   总被引:29,自引:0,他引:29  
We compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1. A set of negative markers that confirm the absence of differentiation was also developed. These include genes characteristic of trophoectoderm, markers of germ layers, and of more specialized progenitor cells. While the expression of many of the markers was similar in mouse and human cells, significant differences were found in the expression of vimentin, beta-III tubulin, alpha-fetoprotein, eomesodermin, HEB, ARNT, and FoxD3 as well as in the expression of the LIF receptor complex LIFR/IL6ST (gp130). Profound differences in cell cycle regulation, control of apoptosis, and cytokine expression were uncovered using focused microarrays. The profile of gene expression observed in H1 cells was similar to that of two other human ES cell lines tested (line I-6 and clonal line-H9.2) and to feeder-free subclones of H1, H7, and H9, indicating that the observed differences between human and mouse ES cells were species-specific rather than arising from differences in culture conditions.  相似文献   

12.
The influence of cytokine LIF (Leukemia Inhibitory Factor) on the viability, and proliferation of mouse embryonic stem cells (ESC) (R1 cell line) and their distribution by cell cycle stages has been investigated. LIF (5–20 ng/ml) increased growth of colonies and maintained high proliferative and pluripotent properties of R1 cells. LIF was also involved into the inhibition of spontaneous cell differentiation and apoptotic cell death; it also decreased the rations of S/G2 + M cell cycle and doubling-time of cell population.  相似文献   

13.
Protein phosphorylation plays an important role in the regulation of self-renewal and differentiation of embryonic stem cells. However, the responsible intracellular kinases are not well characterized. Here, we discovered that cyclin K protein was highly expressed in pluripotent embryonic stem cells but low in their differentiated derivatives or tissue-specific stem cells. Upon cell differentiation, the level of cyclin K protein was decreased. Furthermore, knockdown of cyclin K led to cell differentiation, which could be rescued by an expression construct resistant to RNA interference. Surprisingly, cyclin K did not interact with CDK9 protein in cells as thought previously. Instead, it associated with CrkRS (also known as CDK12) and CDC2L5 (also known as CDK13). Similar to cyclin K, both CDK12 and CDK13 proteins were highly expressed in murine embryonic stem cells and were decreased upon cell differentiation. Importantly, knockdown of either kinase resulted in differentiation. Thus, our studies have uncovered two novel protein kinase complexes that maintain self-renewal in embryonic stem cells.  相似文献   

14.
Dvorak P  Dvorakova D  Hampl A 《FEBS letters》2006,580(12):2869-2874
Cancer stem cells are cancer cells that originate from the transformation of normal stem cells. The most important property of any stem cell is the ability to self-renew. Through this property, there are striking parallels between normal stem cells and cancer stem cells. Both cell types share various markers of “stemness”. In particular, normal stem cells and cancer stem cells utilize similar molecular mechanisms to drive self-renewal, and similar signaling pathways may induce their differentiation.The fibroblast growth factor 2 (FGF-2) pathway is one of the most significant regulators of human embryonic stem cell (hESC) self-renewal and cancer cell tumorigenesis. Here we summarize recent data on the effects of FGF-2 and its receptors on hESCs and leukemic stem/progenitor cells. Also, we discuss the similarities of these findings with stem cell renewal and differentiation phenotypes.  相似文献   

15.
视网膜退行性病变影响着全世界数百万人。然而,视网膜是人体再生能力很差的一类组织,成年机体无法自我更新那些病变中丢失的视网膜细胞,导致视网膜退行性病变的不可逆性。因此,恢复患者视觉将依赖于引入外源细胞替代丢失的视网膜神经元。胚胎干细胞(ES细胞)具有无限的自我更新能力和形成机体所有类型细胞的巨大分化潜力。这两个特性使得ES细胞成为细胞替代疗法的理想供体细胞。近年来,人们在探索将ES和诱导多能干细胞(iPS细胞)体外定向诱导分化为视网膜神经元,甚至整个视网膜方面已取得多项进展,并且体外形成的视网膜细胞可以与宿主视网膜整合。在此篇综述中,首先简要概括哺乳动物视网膜的组织结构、发育过程和调控机制,然后,重点阐述近年来科研工作者探索ES/iPS细胞体外诱导分化为视网膜细胞和组织的研究进展。  相似文献   

16.
17.
18.
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs.  相似文献   

19.
Recently, we proposed that rabbit embryonic stem (ES) cells can be stable mammalian ES cells and can be a small animal model for human ES cell research. However, the signaling pathways controlling rabbit ES cell pluripotency remain largely unknown. Here we report that bFGF can maintain the undifferentiated status of rabbit ES cells and found that Activin/Nodal signaling through Smad2/3 activation is necessary to maintain the pluripotent status of rabbit ES cells. We further show that in spite of STAT3 in rabbit ES cells, LIF is dispensable for maintenance of undifferentiated status in rabbit ES cells. Although phosphorylation of Janus Kinase signal transducer and activator (JAK/STAT) disappeared after JAK-inhibitor treatment, OCT4 is constantly produced. When rabbit ES cells were cultured for more than 40 passages in the absence of LIF, expression of stem cell markers and teratoma formation were observed. Additionally, treatment with Rho-associated kinase (ROCK) inhibitor, Y27632, to rabbit ES cells significantly enhanced cell growth. These findings suggest that molecular mechanisms underlying rabbit ES cell self-renewal and pluripotency are similar to primate ES cells. Rabbit ES cells may provide a translational research model for the study of human diseases in vitro and applications to transplantation therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号